

Report on Desktop Geotechnical Assessment

Proposed Health Services Facility 31 - 33 Smith Street, Charlestown

Prepared for GPV Property Group

> Project 210780.00 November 2022



## **Douglas Partners** Geotechnics | Environment | Groundwater

#### **Document History**

#### Document details

| Project No.         | 210780.00                                 | Document No. | R.002.Rev1 |  |  |
|---------------------|-------------------------------------------|--------------|------------|--|--|
| Document title      | Report on Desktop Geotechnical Assessment |              |            |  |  |
|                     | Proposed Health Services Facility         |              |            |  |  |
| Site address        | 31 - 33 Smith Street, Charlestown         |              |            |  |  |
| Report prepared for | GPV Property Group                        |              |            |  |  |
| File name           | 210780.00.R.002.Rev                       | v1.docx      |            |  |  |

#### Document status and review

| Status     | Prepared by  | Reviewed by     | Date issued      |  |
|------------|--------------|-----------------|------------------|--|
| Revision 0 | Michael Gawn | Scott McFarlane | 25 January 2022  |  |
| Revision 1 | Michael Gawn | Scott McFarlane | 18 November 2022 |  |
|            |              |                 |                  |  |
|            |              |                 |                  |  |

#### Distribution of copies

| Biotribution of |            |       |                              |
|-----------------|------------|-------|------------------------------|
| Status          | Electronic | Paper | Issued to                    |
| Revision 0      | 1          | 0     | Ian Gill, GPV Property Group |
| Revision 1      | 1          | 0     | Ian Gill, GPV Property Group |
|                 |            |       |                              |
|                 |            |       |                              |

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

|          | Signature . | Date             |
|----------|-------------|------------------|
| Author   | Martin      | 18 November 2022 |
| Reviewer |             | 18 November 2022 |



Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 15 Callistemon Close Warabrook NSW 2304 PO Box 324 Hunter Region Mail Centre NSW 2310 Phone (02) 4960 9600



#### **Table of Contents**

#### Page

| 1. | Introd | uction                                  | 1   |
|----|--------|-----------------------------------------|-----|
| 2. | Previo | ous DP Projects                         | 1   |
| 3. | Site D | Description and Site Inspection         | 3   |
| 4. | Geolo  | gy, Acid Sulfate Soils and Hydrogeology | 7   |
| 5. | Propo  | sed Development                         | 8   |
| 6. | Field  | Work                                    | 8   |
|    | 6.1    | DP (2014)                               | 8   |
|    | 6.2    | DP (2014a)                              | 9   |
|    | 6.3    | DP (2022)                               | 9   |
|    | 6.4    | Summary                                 | .10 |
|    | 6.5    | Field Work Results                      | .10 |
| 7. | Comn   | nents                                   | .14 |
|    | 7.1    | Slope Stability Assessment              | .14 |
|    | 7.2    | Excavation Conditions                   | .14 |
|    | 7.3    | Excavation Support                      | .15 |
|    | 7.4    | Foundation Strategies                   | .17 |
|    |        | 7.4.1 High Level Footings               | .18 |
|    |        | 7.4.2 Piled Footings                    | .19 |
|    | 7.5    | Exposure Classifications                | .21 |
|    | 7.6    | Excavation Vibration                    | .21 |
| 8. | Refer  | ences                                   | .22 |
| 9. | Limita | tions                                   | .22 |



| Appendix A: | About this Report                                                                      |
|-------------|----------------------------------------------------------------------------------------|
|             | Sampling Methods                                                                       |
|             | Soil Descriptions                                                                      |
|             | Rock Descriptions                                                                      |
|             | Symbols and Abbreviations                                                              |
|             | Appendix C (AGS, 2007) – Qualitative Terminology for Use in Assessing Risk to Property |
|             | Appendix G (AGS, 2007) – Some Guidelines for Hillside Construction                     |
| Appendix B: | Borehole Logs (Bores 1 to 8)                                                           |
|             | Borehole Logs (Bores 101 to 112)                                                       |
|             | Borehole Logs (Bore 201 to 214)                                                        |
|             | Borehole Log (Bore 1001)                                                               |
|             | Core Photoplates (Bores 1 to 3)                                                        |
| Appendix C: | Drawing 1 – Test Location Plan                                                         |
|             | Drawing 2 – Cross-section A                                                            |
|             | Drawing 3 – Cross-section B                                                            |
|             | Drawing 4 – Cross-section C                                                            |



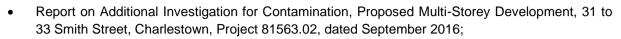
### Report on Desktop Geotechnical Assessment Proposed Health Services Facility 31 - 33 Smith Street, Charlestown

#### 1. Introduction

This report presents the results of a desktop geotechnical assessment undertaken for a proposed health services facility at 31 - 33 Smith Street, Charlestown. The investigation was commissioned by Ian Gill of GPV Property Group and was undertaken in accordance with Douglas Partners' proposal 210780.00.P.001 dated 11 November 2021.

It is understood that the proposed development will include construction of a new four-storey health care facility with rooftop plant fronting the Pacific Highway and a multi-deck car park structure facing Smith Street.

DP has undertaken previous investigation at the site, including a number of subsurface investigation episodes as well as desktop assessments. Further details are provided in Section 2.


The aim of the investigation was to assess the subsurface soil and groundwater conditions across the site in order to provide additional information on the following:

- Slope stability;
- Site Classification, including site reactivity;
- Design parameters for spread footings and piles;
- Safe batter slopes (short term and long term);
- Retaining wall design parameters;
- Requirements for temporary working platforms;
- Pavement thickness design for internal pavements; and
- Identification of the presence of acid sulfate soils.

#### 2. **Previous DP Projects**

Douglas Partners Pty Ltd (DP) have undertaken a number of investigations at the site, including the following:

- Report on Preliminary Geotechnical and Contamination Investigation, Proposed Multi-Storey Development, 31 to 33 Smith Street, Charlestown, Project 81563 dated December 2014;
- Report on Detailed Site Investigation (Contamination), Proposed Multi-Storey Development, 31 to 33 Smith Street, Charlestown, Project 81563.01, dated November 2014;



**Douglas Partners** Geotechnics | Environment | Groundwater

- Remediation Action Plan, Proposed Multi-Storey Development, 31 to 33 Smith Street, Charlestown, Project 81563.02, dated September 2016;
- Report on Validation of Remediation, Proposed Multi-Storey Development, 31 to 33 Smith Street, Charlestown, Project 81563.03, dated February 2018;
- Report on Mine Subsidence Desktop Assessment, Proposed Multi-Storey Development, 31-33 Smith Street, Charlestown, Project 210780.00, dated December 2021;
- Report on Desktop Geotechnical Assessment, Proposed Health Services Facility, 31-33 Smith Street, Charlestown, Project 210780.00, dated January 2022; and
- Report on Geotechnical Investigation, Proposed Medical Facility, 31-33 Smith Street, Charlestown, Project 210780.01, dated June 2022.

The approximate location of the previous DP bores are shown in Figure 1 below and also on Drawing 1 in Appendix C.



Figure 1: Location of previous bores undertaken by DP on site

The results of the previous investigation included fill to depths of up to 0.95 m, underlain by clayey sand or clay to depths ranging from 0.95 m to 3.5 m. The underlying bedrock was initially extremely low to low strength, becoming medium to high strength from about 4.25 m to 9.5 m depth, and continued to termination of the bores at depths ranging from 10.15 m to 11.64 m.



The geotechnical information was undertaken with reference to AS 1726:1993 which predates the current revised standard (AS 1726, 2017) which was published in May 2017. Interpretations presented in this report are based on descriptions in AS 1726:1993 most notably the description of extremely low strength rock which is classified as having a Point Load strength I<sub>s</sub>(50)  $\leq$ 0.03 MPa, ie a material with rock structure but with soil-like properties.

#### 3. Site Description and Site Inspection

The site is located on the north-eastern corner of the intersection of Pacific Highway and Frederick Street, Charlestown with a frontage to Smith Street (refer Figure 2). The site is a rectangular parcel of land of approximately  $8,000 \text{ m}^2$ .



Figure 2: Aerial image showing the site (sourced from MetroMap dated 23 April 2021)

The address of the site is 31 to 33 Smith Street, Charlestown and comprises Lots 1 and 2 in DP877977.



At the time of the previous investigation (DP, 2014), development on the site included a car park in the northern half and a fenced off predominantly grassed area in the southern half. The building shown in the aerial image in Figure 1 is understood to have been demolished about a month before the commencement of field work for the investigation.

Several trees, as shown in Figure 1, were present on the site at the time of the previous investigation (DP, 2014).

The ground surface at the site falls uniformly to the south-west at slopes of less than 5°, with elevations ranging from 112 m AHD in the north-eastern corner to 108 m AHD in the south-western corner.

A site inspection was undertaken on 18 January 2022 to confirm that no significant changes have occurred within the site since the previous investigation undertaken by DP in 2014. A further inspection was undertaken by a senior geotechnical engineer on 16 November 2022.

Figure 3 to Figure 8 show the condition of the site at the time of inspections (January 2022 and November 2022).



Figure 3: View looking north-west from southern boundary (January 2022)





Figure 4: View looking south-west from near centre of site (January 2022)



Figure 5: Exposed weathered rock along northern boundary (January 2022)







Figure 6: View looking south-west from north-east corner (January 2022)



Figure 7: View of site looking south-west (left) and existing wall along western boundary (right) [November 2022]





Figure 8: View looking north-west to building beyond western boundary (November 2022)

#### 4. Geology, Acid Sulfate Soils and Hydrogeology

Reference to the 1:250,000 state-wide geodatabase provided by the Geological Survey of NSW indicates the site is underlain by the Adamstown Subgroup of the Late Permian Aged Newcastle Coal Measures which generally comprise conglomerate, sandstone, siltstone, coal and tuffaceous claystone.

Reference to the state-wide digital Acid Sulfate Soil Risk Mapping indicates that the site lays in an area of no known occurrence of acid sulfate soil conditions.

A review of the Department of Water on-line information did not reveal any registered groundwater bores within 3 km of the site. The regional groundwater flow direction is believed to be either in a south-east or south-west direction. The nearest mapped watercourse lies approximately 500 m to the south-east (Flaggy Creek), which eventually discharges into the ocean approximately 4 km to the east of the site. It should be noted that groundwater levels are affected by climatic conditions and soil permeability and will therefore vary with time.



#### 5. Proposed Development

It is understood that the proposed development will include construction of a new four-storey health care facility with rooftop plant fronting the Pacific Highway and a multi-deck car park structure facing Smith Street (refer Figure 9 and Figure 10). The development will require excavation to 105.6 m AHD (about 3 m depth along Smith Street).



Figure 9: Layout of proposed development

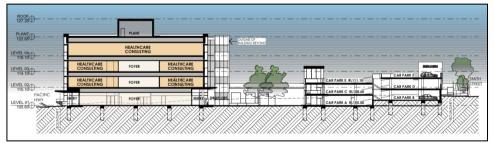



Figure 10: Section through proposed development

#### 6. Field Work

#### 6.1 DP (2014)

Field work for (DP, 2014) included the drilling of three deep boreholes (Bores 1 to 3) to depths ranging from 10.15 m to 11.64 m together with five shallow bores (Bores 4 to 8) to depths ranging from 0.7 m to 4.45 m.



The test locations were set out by a geotechnical engineer relative to existing site features and were recorded using a hand held GPS unit which has an accuracy of about  $\pm 10$  m. Surface levels at each bore were provided by LMCC and are shown on each borehole log.

All the bores (except Bore 8) were drilled using a truck mounted drilling rig using solid flight auger techniques within the soil profile, followed by NLMC diamond coring techniques in the bedrock. Standard penetration tests (SPTs) were performed at selected depths. A geotechnical engineer from DP logged the subsurface conditions encountered in the bores and collected samples for subsequent laboratory testing and identification purposes.

The approximate test locations are shown on Drawing 1 in Appendix C.

#### 6.2 DP (2014a)

Field work for (DP, 2014a) included the drilling of an additional 12 boreholes (Bores 101 to 112) to depths of 1.1 m to 1.5 m using a truck-mounted drilling rig.

Logging of bores by an environmental engineer and collection of soil samples at regular depths or changes in strata;

Collection of soil samples from the bores with reference to standard contamination protocols (i.e. directly from the auger and standard penetration test (SPT) sampler).

#### 6.3 DP (2022)

This investigation was aimed at providing additional information for mine subsidence assessment, and included the drilling of a single bore (Bore 1001) to a depth of 158 m. The subsurface conditions included:

- Predominantly clayey soil (probably including weathered bedrock) to 4.5 m depth;
- Conglomerate and sandstone bedrock to 54.5 m depth;
- Coal to 57.5 m depth;
- Predominantly laminite and siltstone to 71.8 m depth;
- Coal to 73 m depth;
- Conglomerate, sandstone and carbonaceous siltstone to 120 m depth;
- Coal with tuffaceous siltstone seam to 130.5 m depth;
- Tuffaceous claystone, siltstone and laminite to 153.9 m depth;
- Coal, mine void and rubble to 156.9 m depth;
- Unknown bedrock (floor) to termination of bore at 158 m depth.



#### 6.4 Summary

Table 1, below provides a summary of the subsurface investigation undertaken on the site.

| Bore | ere Easting Northing |         | Surface Level<br>(m AHD) | Termination<br>Depth (m) |  |
|------|----------------------|---------|--------------------------|--------------------------|--|
| 1    | 378183               | 6351826 | 110.3                    | 10.15                    |  |
| 2    | 378148               | 6351784 | 107.3                    | 11.64                    |  |
| 3    | 378114               | 6351829 | 107.3                    | 10.3                     |  |
| 4    | 378180               | 6351783 | 108.2                    | 4.45                     |  |
| 5    | 378157               | 6351806 | 108.3                    | 2.9                      |  |
| 6    | 378124               | 6351787 | 106.0                    | 2.5                      |  |
| 7    | 378141               | 6351841 | 108.7                    | 2.5                      |  |
| 8    | 378131               | 6351802 | 107.1                    | 0.7                      |  |
| 101  | 378120               | 6351837 | 107.6                    | 1.45                     |  |
| 102  | 378177               | 6351833 | 110.3                    | 1.45                     |  |
| 103  | 378163               | 6351820 | 109.1                    | 1.1                      |  |
| 104  | 378120               | 6351816 | 107.3                    | 1.45                     |  |
| 105  | 378136               | 6351816 | 107.8                    | 1.45                     |  |
| 106  | 378175               | 6351810 | 1098.0                   | 1.16                     |  |
| 107  | 378193               | 6351807 | 109.5                    | 1.45                     |  |
| 108  | 378116               | 6351798 | 106.2                    | 1.5                      |  |
| 109  | 378168               | 6351793 | 108.4                    | 1.5                      |  |
| 110  | 378190               | 6351787 | 108.3                    | 1.5                      |  |
| 111  | 378134               | 6351790 | 107.0                    | 1.2                      |  |
| 112  | 378176               | 6351776 | 107.8                    | 1.5                      |  |
| 201  | NR                   | NR      | NR                       | 1.2                      |  |
| 202  | NR                   | NR      | NR                       | 1.2                      |  |
| 203  | NR                   | NR      | NR                       | 1.2                      |  |
| 204  | NR                   | NR      | NR                       | 1.0                      |  |
| 1001 | 378148               | 6351797 | 107.7                    | 158.0                    |  |

Table 1: Summary of Subsurface Investigations

NR = Not recorded

#### 6.5 Field Work Results

The subsurface conditions encountered within the bores from previous investigations are presented in detail in the borehole logs in Appendix A. These should be read in conjunction with the accompanying notes in Appendix A which explain the descriptive terms and classification methods used in the logs. The geotechnical units identified during the investigations are summarised in Table 2.



| Unit No. | Stratum                                                                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | Fill                                                                           | Generally sandy gravel or gravelly sand (pavement material), or<br>brown to red brown sand or silty sand. Anthropogenic inclusions<br>(including brick and tile fragments, asphalt fragments, slag and<br>concrete) were observed within the filling in Bores 2, 3, 4, 7 and 8.                                                                                                                                                                                                                                                                                                                            |
| 2        | Residual Clay                                                                  | Stiff through to hard brown mottled light grey sandy clay or clay. SPT values recorded in this material ranged from 10 to 13 blow counts per 300 mm of penetration. This layer graded to extremely weathered bedrock.                                                                                                                                                                                                                                                                                                                                                                                      |
| 3        | Extremely<br>Weathered<br>bedrock (dense<br>clayey sand or<br>hard sandy clay) | Grey mottled red and brown/yellow mottled red clayey sand or sandy<br>clay with rock-like structure. High SPT blow counts were recorded in<br>this material (ranging from 24 to 48 blows per 300 mm penetration)<br>which may indicate that it is extremely weathered sandstone bedrock.                                                                                                                                                                                                                                                                                                                   |
| 4        | Bedrock                                                                        | <ul> <li>Initially sandstone becoming conglomerate with depth with the following strength profile:</li> <li>Generally very low to low strength, occasionally extremely weathered in the upper 2 m (Unit 4.1). Core loss was recorded in the upper sections of the bedrock and may be as a result of weathered seams within the rock mass. The upper sections of bedrock had a fracture spacing ranging from about 0.1 m to 1 m;</li> <li>Medium to high strength (Unit 4.2). The medium to high strength, and high strength sections of the recovered core has fracture spacing's of up to 3 m.</li> </ul> |

#### Table 2: Identified Geotechnical Units

A summary of the depths of each unit is presented in Table 3 below.



|          |                     | Depth to Base of Each Unit (m) |                                    |                                                                                 |                                                       |                                                   |                                  |
|----------|---------------------|--------------------------------|------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|----------------------------------|
| Location | Surface RL<br>(AHD) | Unit 1<br>(Filling)            | Unit 2<br>(Clayey sand<br>or Clay) | Unit 3<br>(Extremely<br>weathered<br>bedrock -<br>Clayey Sand or<br>sandy clay) | Unit 4.1<br>Very Low<br>to Low<br>strength<br>Bedrock | Unit 4.2<br>Medium to<br>High Strength<br>Bedrock | Depth of<br>Investigation<br>(m) |
| 1        | 110.3               | 0.70                           | 1.10                               | 2.80                                                                            | >10.15 <sup>(b)</sup>                                 | 7.0 <sup>(a)(b)</sup>                             | 10.15                            |
| 2        | 107.3               | 0.40                           | 1.2                                | 4.36                                                                            | -                                                     | >11.64                                            | 11.64                            |
| 3        | 107.3               | 0.70                           | 0.90                               | 3.00                                                                            | 3.60                                                  | >10.27 <sup>(c)</sup>                             | 10.27                            |
| 4        | 108.2               | 0.95                           | 1.90                               | 3.50                                                                            | >4.45                                                 | -                                                 | 4.45                             |
| 5        | 108.3               | 0.80                           | 0.95                               | -                                                                               | >2.90                                                 | -                                                 | 2.90                             |
| 6        | 106.0               | 0.35                           | 2.20                               | -                                                                               | >2.50                                                 | -                                                 | 2.50                             |
| 7        | 108.7               | 0.30                           | 0.70                               | 2.50                                                                            | >2.50                                                 | -                                                 | 2.50                             |
| 8        | 107.1               | 0.55                           | -                                  | -                                                                               | >0.70                                                 | -                                                 | 0.70                             |
| 101      | 107.6               | 0.9                            | 1.1                                | >1.45                                                                           | -                                                     | -                                                 | 1.45                             |
| 102      | 110.3               | 0.8                            | 1.1                                | >1.45                                                                           | -                                                     | -                                                 | 1.45                             |
| 103      | 109.0               | 0.75                           | 1.0                                | >1.1                                                                            | -                                                     | -                                                 | 1.1                              |
| 104      | 107.3               | 0.8                            | 1.1                                | >1.45                                                                           | -                                                     | -                                                 | 1.45                             |
| 105      | 107.8               | 0.7                            | 0.95                               | >1.45                                                                           | -                                                     | -                                                 | 1.45                             |
| 106      | 109.0               | 0.8                            | 0.95                               | >1.16                                                                           | -                                                     | -                                                 | 1.16                             |
| 107      | 109.5               | 0.6                            | 1.1                                | >1.45                                                                           | -                                                     | -                                                 | 1.45                             |
| 108      | 106.2               | 0.3                            | 1.0                                | >1.5                                                                            | -                                                     | -                                                 | 1.5                              |
| 109      | 108.4               | 0.9                            | 1.3                                | >1.5                                                                            | -                                                     | -                                                 | 1.5                              |
| 110      | 108.3               | 0.4                            | 1.2                                | >1.5                                                                            | -                                                     | -                                                 | 1.5                              |
| 111      | 107.0               | 0.3                            | 0.8                                | >1.2                                                                            | -                                                     | -                                                 | 1.2                              |
| 112      | 107.8               | 1.1                            | >1.5                               | -                                                                               | -                                                     | -                                                 | 1.5                              |
| 1001     | 107.7               | 1.0                            |                                    | 4.5                                                                             | Strength                                              | not assessed                                      | 158.0                            |

#### Table 3: Summary of Depth to Base of Each Geotechnical Unit

Notes to Table 3:

(a) "extremely low" strength same from 4 m to 4.25 m depth

(b) Low to medium strength from 7.0 m depth

(c) Low strength from 8.4 m to 9.5 m depth

A summary of the elevation of the top of each geotechnical unit is provided in Table 4.

Page 12 of 23



|          | Elevation of Top of Each Unit (mAHD) |                                    |                                                                                 |                                                    |                                                |  |  |
|----------|--------------------------------------|------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------|--|--|
| Location | Unit 1<br>(Filling)                  | Unit 2<br>(Clayey sand or<br>Clay) | Unit 3<br>(Extremely<br>weathered<br>bedrock -<br>Clayey Sand or<br>sandy clay) | Unit 4.1<br>Very Low to<br>Low strength<br>Bedrock | Unit 4.2<br>Medium to High<br>Strength Bedrock |  |  |
| 1        | 110.3                                | 109.6                              | 109.2                                                                           | 103.3                                              | 107.5                                          |  |  |
| 2        | 107.3                                | 106.9                              | 106.1                                                                           | 102.94                                             | 102.9                                          |  |  |
| 3        | 107.3                                | 106.6                              | 106.4                                                                           | 104.3                                              | 103.7                                          |  |  |
| 4        | 108.2                                | 107.25                             | 106.3                                                                           | 104.7                                              | NE                                             |  |  |
| 5        | 108.3                                | 107.5                              | 107.35                                                                          | NE                                                 | NE                                             |  |  |
| 6        | 106                                  | 105.65                             | 103.8                                                                           | NE                                                 | NE                                             |  |  |
| 7        | 108.7                                | 108.4                              | 108                                                                             | 106.2                                              | NE                                             |  |  |
| 8        | 107.1                                | 106.55                             | NE                                                                              | NE                                                 | NE                                             |  |  |
| 101      | 107.6                                | 106.7                              | 106.5                                                                           | NE                                                 | NE                                             |  |  |
| 102      | 110.3                                | 109.5                              | 109.2                                                                           | NE                                                 | NE                                             |  |  |
| 103      | 109                                  | 108.25                             | 108                                                                             | NE                                                 | NE                                             |  |  |
| 104      | 107.3                                | 106.5                              | 106.2                                                                           | NE                                                 | NE                                             |  |  |
| 105      | 107.8                                | 107.1                              | 106.85                                                                          | NE                                                 | NE                                             |  |  |
| 106      | 109                                  | 108.2                              | 108.05                                                                          | NE                                                 | NE                                             |  |  |
| 107      | 109.5                                | 108.9                              | 108.4                                                                           | NE                                                 | NE                                             |  |  |
| 108      | 106.2                                | 105.9                              | 105.2                                                                           | NE                                                 | NE                                             |  |  |
| 109      | 108.4                                | 107.5                              | 107.1                                                                           | NE                                                 | NE                                             |  |  |
| 110      | 108.3                                | 107.9                              | 107.1                                                                           | NE                                                 | NE                                             |  |  |
| 111      | 107                                  | 106.7                              | 106.2                                                                           | NE                                                 | NE                                             |  |  |
| 112      | 107.8                                | 106.7                              | NE                                                                              | NE                                                 | NE                                             |  |  |
| 1001     | 107.7                                | 106.7 Strength not assessed        |                                                                                 |                                                    |                                                |  |  |

#### Table 4: Elevation of Top of each Geotechnical Unit

Notes to Table 4:

Blue shaded cells indicates geotechnical unit encountered at anticipated bulk excavation level of 105.6 mAHD.

Bold entries indicate locations where very low strength or stronger rock encountered above proposed bulk excavation level

Drawings 2 to 4, in Appendix E provide sections through the site based on the conditions encountered in the bores. Interpolation between bores should be considered approximate and additional investigations should be undertaken to confirm conditions between bore locations.



No free groundwater was observed during the drilling of the bores, although it should be noted that the introduction of drilling fluids precluded groundwater measurements in some bores. Solid flight auger drilling was generally carried out to at least 2.5 m depth, with no groundwater observed within this depth of investigation. It should be noted that groundwater conditions are dependent on factors such as soil permeability and recent weather conditions and will vary with time.

#### 7. Comments

#### 7.1 Slope Stability Assessment

Based on correspondence provided by the client, it is understood that Lake Macquarie City Council (LMCC) considers that 'based on Council's Geotechnical Slope Stability Guidelines, the development is categorised as a Sensitive Use and therefore requires a Slope Stability Assessment'. It is further understood that due to the comprehensive nature of DP's geotechnical report that 'Council would accept an abbreviated report from the same consultant stating that site slope stability hazards are below the accepted thresholds for risk to property and risk to life'.

There were no overt signs of deep seated slope instability at the time of the assessment. No obvious signs of instability were observed within the visible elements of existing structures immediately adjacent to the site.

There is no site-specific data that would allow a quantitative assessment of risk. Based on site geomorphology, however, and the geology and general history of landslip in the Newcastle / Lake Macquarie area, a qualitative assessment can be made as outlined in Appendix C of AGS (2007) and with reference to LMCC (2020).

Based on site observations and topographical / geological information for the site the principal identified slope hazard relates to failure of proposed retaining walls. In this regard, several walls, up to 3 m in height, are required for the proposed development. Provided these walls are engineer designed and the recommendations contained within this report are implemented in the design, the likelihood of this hazard is considered 'rare'. The consequence of such failure would involve damaged to parts of the structure and possible upslope services / structures have been assessed as of 'major' consequence. Hence the risk associated with this hazard has been assessed as "Low", which would normally be considered acceptable by owners and authorities.

#### 7.2 Excavation Conditions

Excavation of approximately 3 m is required along the western boundary of the site for the Level 1 carpark to a level of 105.6 m AHD.

Based on the results of the nearest bores (Bores 1, 4, 107, 110 and 112), excavation is anticipated through the following strata:

- Generally gravelly sand fill and gravelly clay or sandy clay filling to depths ranging from about 0.6 m to 1.1 m;
- Residual sandy clay and clay soils to depths of about 1.5 m to 2 m; underlain by;



- Extremely weathered sandstone (dense clayey sand) to depths ranging from about 2 m to 3.5 m depth; underlain by
- Very low to medium strength sandstone.

Therefore, based on conditions encountered in the bores, it is anticipated that the basement excavation will be predominantly through filling, residual clayey sand or sandy clay soils, extremely weathered bedrock or very low to low strength bedrock (Units 1 to 3 and 4.1). Excavation of the soils and extremely weathered sandstone should be readily achievable by conventional earthmoving equipment, such as hydraulic excavators. Medium strength conglomerate bedrock was encountered in Bore 1 at a depth of 2.8 m (RL 107.7 m AHD) and is likely to be encountered during basement excavation and detailed excavation for footings. Similarly, high strength bedrock was encountered in Bores 1 to 3 at depths ranging from 3.6 m to 4.36 m, and depending on the final depth of excavation, may be encountered during bulk earthworks and footing excavation.

Excavation of low to medium strength bedrock is likely to necessitate the use of heavy excavation equipment, such as a 30 tonne excavator fitted with a narrow buck and "tiger teeth" or possibly the use of a rock hammer. Excavation of medium to high strength bedrock, if encountered, which has a fracture spacing generally of greater than 1 m may require heavy ripping (with D9L or larger) or excavation using a hydraulic hammer. It is considered unlikely that blasting would be allowed during excavation.

Detailed excavation for footings and side trimming of the bulk excavation may require use of a hydraulic hammer fitted to an excavator of at least 25 tonnes gross mass. Rock milling or rock sawing equipment could also be used to penetrate the low strength or stronger rock where there is a need to limit noise and vibration emanating from the excavation work or provide relatively clean excavation perimeters.

Groundwater inflow into the excavation of less than 3 m depth is expected to be only slight (if any), given that groundwater was not encountered whilst augering or sampling the bores during field work. If water is encountered, it could be managed by simple sump and pump methods.

#### 7.3 Excavation Support

Where space permits, it will be most practicable to batter the slopes of the excavation and it is suggested that batter slopes outlined in Table 5 below be used for temporary (construction) and long term batter slopes.

| Material                                                                   | Short Term Safe Batter<br>Slope (H:V) | Long Term Safe Batter<br>Slope (H:V) |  |
|----------------------------------------------------------------------------|---------------------------------------|--------------------------------------|--|
| Filling, residual clay and extremely weathered sandstone (Units 1,2 and 3) | 1.5:1                                 | 2.5:1                                |  |
| Very low to low strength sandstone (Unit 4.1 and 4.2)                      | 1:1                                   | 1.5:1                                |  |
| Medium and high strength sandstone<br>(Unit 4.3)                           | Vertical*                             | 0.5:1*                               |  |

#### Table 5: Suggested Safe Batter Slopes

Notes to Table 5: \* - subject to inspection by Engineering Geologist or Geotechnical Engineer



The batter slopes given above assume that there are no additional pressures due to surcharging from footings or vehicular loads, or sloping surface above the cut face.

The adoption of the batter slopes of medium to high strength (Unit 4.3) rock shown in Table 5 must be accompanied by geological inspection every 2 m of excavation depth to assess any adverse jointing which could give rise to localised instability such as block fallout or wedge failure. The support of these locally unstable blocks and wedges, or very low to low strength bands can then be provided by in-situ stabilisation techniques utilising dowelled mesh, rock bolts and / or sprayed concrete. It is noted that occasional high angle joints (above 40°) were noted in the retrieved core. Particular care and close inspection will be required if such discontinuities are exposed in the excavations to assess support requirements.

Where there is insufficient space for temporary batters as described above or where there are existing structures or services near the crest of the batter, then temporary excavation support will be required. The temporary excavation support could include a soldier pile retaining wall which is installed prior to excavation, and designed for the appropriate earth pressures.

Where retaining walls are constructed at the completion of earthworks, the design of retaining structures should be based on the parameters presented in Table 6. Cantilevered support should be designed on a triangular earth pressure distribution, and where propped support is provided by the final structure design should be based on a trapezoidal earth pressure distribution.

The pressure distribution given above assumes that no surcharging of the walls occurs from nearby footings. If the footings behind retaining walls from further retaining walls, or proposed structures are not taken below the retaining wall zone of influence (which is approximated by a line drawn at 45° above the horizontal from the base of the wall) or to low strength or stronger rock, then additional allowance should be made for the load from the footings. In this case and where movement of the walls cannot be tolerated (such as where it supports internal walls or overlying structure), the wall should be designed for 'at rest' conditions to minimise lateral deflections in the wall.

| Parameter                                        | Symbol                | Filling, Soil and<br>Extremely Low and Very<br>Low Strength Rock<br>(Units 1 to 3) | Very Low to<br>Low Strength<br>Rock<br>(Unit 4.1) | Medium or High<br>Strength Rock<br>(Unit 4.2) |  |
|--------------------------------------------------|-----------------------|------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------|--|
| Unit weight (above water table)                  | γь                    | 20 kN/m <sup>3</sup>                                                               | 20 kN/m <sup>3</sup>                              | 20 kN/m <sup>3</sup>                          |  |
| Active earth pressure<br>coefficient             | Ka                    | 0.4                                                                                | 0.2                                               | 0.1                                           |  |
| At-rest earth pressure<br>coefficient            | K₀                    | 0.6                                                                                | 0.3                                               | 0.2                                           |  |
| Passive earth pressure<br>coefficient / pressure | $K_p \text{ or } P_P$ | 2.5                                                                                | 200 kPa                                           | 2000 kPa                                      |  |

Table 6: Suggested Unfactored Retaining Wall Design Parameters



It should be noted that these parameters will produce unfactored, working (or serviceability) loadings and deflections and resultant bending moments and anchor or strut forces (if proposed) should be factored for ultimate design loadings.

Furthermore, the earth pressure design parameters given above are based on the assumption that full drainage will be provided behind the retaining walls. All retaining walls, regardless of height, should be provided with geotextile encapsulated free draining backfill (such as 10 mm single size aggregate) with a slotted drainage pipe at the base of the wall for the relief of hydrostatic pressures. Water collected by the drainage system should be discharged to a formal stormwater drainage system down slope of the proposed development. If drainage is not provided behind retaining walls, then the walls should be designed to withstand hydrostatic pressures over the full height of the respective walls.

#### 7.4 Foundation Strategies

The proposed development generally includes construction of a new four-storey health care facility fronting the Pacific Highway and a multi-deck car park structure facing Smith Street (refer Figure 9 and Figure 10).

The design loads are not known at this stage, however, given the presence of lower level car parks, the column loads are likely to be significant and support of these structures on piled footings or large pad footings founded within bedrock will be required.

Based on the available information, conditions anticipated at bulk excavation level are summarised in Table 7. In summary, the anticipated conditions at bulk excavation level is:

- Medical Facility extremely weathered rock or hard sandy clay, although possible stiff clay in parts; and
- Multi-Storey Carpark predominantly bedrock, ranging from extremely weathered to high strength, hard sandy clay in parts.



| Building         | Bore | Conditions Encountered at Bulk Excavation Level<br>105.6 mAHD            |  |
|------------------|------|--------------------------------------------------------------------------|--|
|                  | 2    | Hard sandy CLAY (grading to rock)                                        |  |
|                  | 3    | Extremely weathered rock (dense clayey sand)                             |  |
|                  | 6    | Stiff Sandy CLAY / medium dense Clayey SAND                              |  |
|                  | 7    | Below depth of investigation (auger refusal at 106.2 m AHD)              |  |
| Medical Facility | 8    | Below depth of investigation (auger refusal at 106.3 m AHD in sandstone) |  |
|                  | 104  | Extremely weathered sandstone (encountered from 106.2 m AHD)             |  |
|                  | 108  | Stiff sandy CLAY                                                         |  |
|                  | 111  | Extremely weathered sandstone (encountered from 106.2 m AHD)             |  |
|                  | 1    | High strength Conglomerate                                               |  |
| Multi-storey 2   |      | Hard sandy CLAY (grading to rock)                                        |  |
| Carpark          | 4    | Extremely weathered sandstone (dense clayey sand)                        |  |
| 5                |      | Very low strength SANDSTONE (v-bit auger refusal at 105.8 m AHD)         |  |

#### Table 7: Summary of Anticipated Conditions at Bulk Excavation Level

Comments on possible footing types are provided in the following sections, based on the subsurface conditions encountered in the investigation and DP's experience in the area.

#### 7.4.1 High Level Footings

High level footings founded within the natural hard sandy clay or dense clayey sand, or underlying bedrock may be suitable subject to a detailed settlement analysis once footing loads have been provided. Pad or strip footings wholly founded within material of similar stiffness may be proportioned for the allowable bearing pressures provided in Table 8.



| Foundation Material                                                 | Unit * | Maximum Allowable<br>Bearing Pressure (kPa) |
|---------------------------------------------------------------------|--------|---------------------------------------------|
| Filling                                                             | 1      | 0                                           |
| Very stiff to hard sandy clay or dense clayey sand                  | 2      | 100                                         |
| Extremely weathered bedrock (dense clayey sand and hard sandy clay) | 3      | 150                                         |
| Very low to low strength sandstone                                  | 4.1    | 1000                                        |
| Medium and high strength sandstone                                  | 4.2    | 2500                                        |

#### Table 8: Suggested Maximum Allowable Bearing Pressures for High Level Footings

Notes to Table 8:

\*Refer to Table 4 for estimated depth of each unit.

The maximum allowable bearing pressures outlined in Table above are conditional on all footing excavations being inspected by a geotechnical engineer prior to casting of concrete to confirm the suitability of the exposed material for the design pressures.

Settlements for pad footings apportioned in accordance with the maximum allowable bearing pressure given above are not expected to exceed a 1% of the footing width but should be confirmed once loads are provided.

#### 7.4.2 Piled Footings

In the event that significant column loads are applied by the buildings, piled footings socketed in rock may be required. The depth to bedrock ranged from 0.55 m to 3.5 m within the bores drilled during the investigation.

As the final layout of the development or the design loads area not known the required depth of piled footings cannot be ascertained with any degree of accuracy at this stage and site specific investigation and assessment at each of the proposed structures will be required.

The following piled footing systems which may be suitable for the development of the site.

#### Concrete Bored Piles

Predominantly granular filling overlying sandy clay or clayey sand soils were encountered in the bores. Hence, bored piles may be suitable for the support of the proposed structures. Bored piles can be cased or uncased as required.

#### Grout-Injected Piles

As an alternative to drilling bored piles using conventional piling rigs, continuous flight auger (CFA) piles (also commonly referred to as 'grout-injected' piles) could be installed at the site. This method is generally limited to equipment fitted with augers having a diameter of up to about 600 mm - 1050 mm.

The main differences between grout-injected piles and large diameter bored piles are:

• Inspection of founding material during boring is not possible with grout-injected piles;



- Higher torque and thrust capacity boring equipment is required for grout-injected piling continuous flight augers to penetrate to the same level as bored pile rigs for the same diameter; and
- Better control of grout / concrete levels during pile construction is possible for large diameter bored piles.

Table provides the preliminary ultimate limit state end bearing pressures and preliminary shaft adhesion values for piles socketed into sandstone or conglomerate bedrock.

| Strata                                                            | Unit | Ultimate End<br>Bearing<br>Pressure<br>(kPa) | Serviceability<br>End Bearing<br>Pressure<br>(kPa) | Ultimate<br>Shaft<br>Adhesion<br>(kPa) |
|-------------------------------------------------------------------|------|----------------------------------------------|----------------------------------------------------|----------------------------------------|
| Extremely weathered bedrock (dense clayey sand and hard clay)     | 3    | 2000                                         | 1000                                               | 100                                    |
| Very low to low strength sandstone / conglomerate                 | 4.1  | 4000                                         | 1500                                               | 300                                    |
| Medium to high strength or high strength sandstone / conglomerate | 4.3  | 40000                                        | 5000                                               | 1500                                   |

Table 9: Preliminary Design Pressures for Founding Rock Strata

Notes to Table 9:

Rock classification based on Pells, Mostyn, Walker, (1998)

The upper 1.5 m of the pile shaft, and any portions within existing fill should be ignored in shaft capacity calculations

In the current Piling Code AS2159 (2009), the design geotechnical strength of a pile ( $R_{d,g}$ ) is the ultimate geotechnical strength ( $R_{d,ug}$ ) multiplied by the geotechnical strength reduction factor ( $\phi_g$ ), such that:

•  $R_{d,g} = \varphi_{g} \cdot R_{d,ug}$ 

The calculated value  $R_{d,g}$  must equal or exceed the structural design action effect  $E_{d}$ .

Selection of the geotechnical strength reduction factor ( $\phi_g$ ) is based on a series of individual risk ratings (IRR) which are weighted and lead to an average risk rating (ARR). The individual risk ratings and final value of  $\phi_g$  depend on the following factors:

- Site: the type, quantity and quality of testing;
- Design: design methods and parameter selection;
- Installation: construction control and monitoring;
- Pile testing regime; testing benefit factor based on percentage of piles tested and the type of testing; and
- Redundancy: whether other piles can take up load if a given pile settles or fails.

Using the methodology outlined in the piling code and the supplementary site data retrieved during the present investigation, average risk ratings have been assessed for future foundations.





The recommended geotechnical strength reduction factors  $(\phi_g)$  for piles founded in bedrock is as follows in Table 10.

|                                     | Geotechnical Strength Reduction Factor (Øg) |                                       |  |
|-------------------------------------|---------------------------------------------|---------------------------------------|--|
| Foundation Strata                   | Low Redundancy in<br>Design of Piles        | High Redundancy in<br>Design of Piles |  |
| Piles founded in underlying bedrock | 0.55                                        | 0.60                                  |  |

| Table 10: | Recommended | Geotechnical | Strength | <b>Reduction Factor</b> |
|-----------|-------------|--------------|----------|-------------------------|
|-----------|-------------|--------------|----------|-------------------------|

These strength reduction factors are based on inspections to be completed by a qualified geotechnical engineer during piling operations, and on dynamic or static load testing in accordance with the requirements of AS2159 (2009) during piling operations. It is however pointed out that the final strength reduction factor will depend on the piling contractor chosen and experience of the pile designer. The strength reduction factors should be checked when this information is available. Piles should be installed by experienced operators, using suitably sized piling rigs, monitoring equipment and supervision.

All piles should also be assessed against serviceability requirements.

#### 7.5 Exposure Classifications

Specific testing of soil aggressivity testing has not been undertaken during the investigation owing to the shallow depth to bedrock and anticipating that the footings will be supported on the underlying bedrock. Reference to the soil landscape mapping for the area and the accompanying notes indicate that the Warners Bay erosional soil landscape typically has a pH ranging from 4 to 12 pH units. It is recommended that preliminary design of piles should be undertaken for a mildly aggressive exposure classification with reference to the current Piling Code (AS2159, 2009). This can be confirmed at the time of more detailed investigation.

#### 7.6 Excavation Vibration

It would be prudent to allow for dilapidation surveys to be carried out on the nearby buildings and existing services to document their condition prior to the commencement of all work.

The use of rock breaking and pneumatic equipment for side trimming and footing excavation in medium strength and high strength rock normally has the potential to affect structures adjoining the proposed excavation.

As a guide, the damage threshold due to vibration is dependent on the quality of the building foundations and construction of the building as well as the wavelength of the vibration and the source distance. The longer the wavelength, the more likely a building is to resonate and suffer damage. For construction equipment (generally in the high frequency or short wavelength range), the damage threshold is 40 mm / sec to 80 mm / sec for buildings founded on rock. Most vibration codes set safe limits for building vibrations at lower levels.



The Standards Australia explosives code recommends the maximum peak particle velocities for various structures subjected to blasting vibration (generally a low frequency vibration).

It should be noted that humans are very sensitive to vibration and consequently may be disturbed by vibration levels which are considered relatively insignificant for buildings. It may therefore be beneficial to carry out vibration monitoring to confirm vibration levels during site works. These potential restraints can be tested by a properly designed trial.

#### 8. References

AGS. (2007). *Practice Note Guidelines for Landslide Risk Management.* Australian Geomechnics, Volume 42, No 1: Australian Geomechanics Society, Landslide Taskforce, Landslide Practice Note Working Group.

AS 1726. (2017). Geotechnical Site Investigations. Standards Australia.

AS2159. (2009). Piling - design and installation. Standards Australia.

DP. (2014). Preliminary Geotechnical and Contamination Investigation, Proposed Multi-Storey Development, 31 to 33 Smith Street, Charlestown, Project 81563.00. Douglas Partners Pty Ltd.

DP. (2014a). Report on Detailed Site Investigation (Contamination), Proposed Multi-Storey Development, 31 to 33 SMith Street, Charlestown, Project 81563.01. Douglas Partners Pty Ltd.

DP. (2021). Report on Mine Subsidence Desktop Assessment, Proposed Mediuulti-Storey Development, 31 - 33 Smith Street, Chalestwon. Douglas Partners Pty Ltd.

DP. (2022). Report on Geotechnical Investigation, Proposed Medical Facility, 31-33 Smith Street, Charlestown, Project 210780.01. Douglas Partners Pty Ltd.

DP. (2022a). Report on Desktop Geotechnical Assessment, Proposed Multi-Storey Development, 31-33 Smith Street, Charlestown, Project 210780.00. Douglas Partners Pty Ltd.

LMCC. (2020). *Geotechnical Slope Stability Guidelines*. F2019-00741, Revision 0, Adopted by Council 28 September 2020: Lake Macquarie City Council.

Pells, Mostyn, Walker. (1998). *Foundations on Sandstone and Shale in the Sydney Region.* Australian Geomechanics Journal - Dec 1998.

#### 9. Limitations

Douglas Partners (DP) has prepared this report for this project at 31 to 33 Smith Street, Charlestown in accordance with DP's proposal 190208 dated 3 April 2019 and acceptance received from Ian Gill of GPV Property Group dated 12 November 2021. The work was carried out under DP's Conditions of Engagement. This report is provided for the exclusive use of GPV Property Group for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.



The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the geotechnical components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The scope for work for this investigation/report did not include the assessment of surface or sub-surface materials or groundwater for contaminants, within or adjacent to the site. Should evidence of filling of unknown origin be noted in the report, and in particular the presence of building demolition materials, it should be recognised that there may be some risk that such filling may contain contaminants and hazardous building materials.

**Douglas Partners Pty Ltd** 

## Appendix A

About This Report Sampling Methods Soil Descriptions Rock Descriptions Symbols and Abbreviations Appendix C (AGS, 2007) – Qualitative Terminology for Use in Assessing Risk to Property Appendix G (AGS, 2007) – Some Guidelines for Hillside Construction



#### Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

#### Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

#### **Borehole and Test Pit Logs**

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

#### Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

#### Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

## About this Report

#### **Site Anomalies**

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

#### **Information for Contractual Purposes**

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

#### **Site Inspection**

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

#### Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

#### **Test Pits**

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

#### Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

#### **Continuous Spiral Flight Augers**

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

#### **Non-core Rotary Drilling**

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

#### **Continuous Core Drilling**

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

#### **Standard Penetration Tests**

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

#### 4,6,7 N=13

In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

## Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

#### Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

# Soil Descriptions

#### **Description and Classification Methods**

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

#### Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

| Туре    | Particle size (mm) |
|---------|--------------------|
| Boulder | >200               |
| Cobble  | 63 - 200           |
| Gravel  | 2.36 - 63          |
| Sand    | 0.075 - 2.36       |
| Silt    | 0.002 - 0.075      |
| Clay    | <0.002             |

The sand and gravel sizes can be further subdivided as follows:

| Туре          | Particle size (mm) |
|---------------|--------------------|
| Coarse gravel | 19 - 63            |
| Medium gravel | 6.7 - 19           |
| Fine gravel   | 2.36 - 6.7         |
| Coarse sand   | 0.6 - 2.36         |
| Medium sand   | 0.21 - 0.6         |
| Fine sand     | 0.075 - 0.21       |

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

| In fine grained soils | (>35% fines) |
|-----------------------|--------------|
|-----------------------|--------------|

| Term      | Proportion | Example         |
|-----------|------------|-----------------|
|           | of sand or |                 |
|           | gravel     |                 |
| And       | Specify    | Clay (60%) and  |
|           |            | Sand (40%)      |
| Adjective | >30%       | Sandy Clay      |
| With      | 15 – 30%   | Clay with sand  |
| Trace     | 0 - 15%    | Clay with trace |
|           |            | sand            |

#### In coarse grained soils (>65% coarse)

| with | clays | or | silts |  |
|------|-------|----|-------|--|
|      |       |    |       |  |

| man olaye er ena |                        |                              |
|------------------|------------------------|------------------------------|
| Term             | Proportion<br>of fines | Example                      |
| And              | Specify                | Sand (70%) and<br>Clay (30%) |
| Adjective        | >12%                   | Clayey Sand                  |
| With             | 5 - 12%                | Sand with clay               |
| Trace            | 0 - 5%                 | Sand with trace              |
|                  |                        | clay                         |

| In coarse grained soils (>65% coarse)     |
|-------------------------------------------|
| <ul> <li>with coarser fraction</li> </ul> |

| Term      | Proportion | Example          |
|-----------|------------|------------------|
|           | of coarser |                  |
|           | fraction   |                  |
| And       | Specify    | Sand (60%) and   |
|           |            | Gravel (40%)     |
| Adjective | >30%       | Gravelly Sand    |
| With      | 15 - 30%   | Sand with gravel |
| Trace     | 0 - 15%    | Sand with trace  |
|           |            | gravel           |

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

## Soil Descriptions

#### **Cohesive Soils**

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

| Description | Abbreviation | Undrained<br>shear strength<br>(kPa) |
|-------------|--------------|--------------------------------------|
| Very soft   | VS           | <12                                  |
| Soft        | S            | 12 - 25                              |
| Firm        | F            | 25 - 50                              |
| Stiff       | St           | 50 - 100                             |
| Very stiff  | VSt          | 100 - 200                            |
| Hard        | Н            | >200                                 |
| Friable     | Fr           | -                                    |

#### **Cohesionless Soils**

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

| Relative<br>Density | Abbreviation | Density Index<br>(%) |
|---------------------|--------------|----------------------|
| Very loose          | VL           | <15                  |
| Loose               | L            | 15-35                |
| Medium dense        | MD           | 35-65                |
| Dense               | D            | 65-85                |
| Very dense          | VD           | >85                  |

#### Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations. Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

**Moisture Condition – Coarse Grained Soils** For coarse grained soils the moisture condition

should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together. Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

#### **Moisture Condition – Fine Grained Soils**

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

# Rock Descriptions

#### **Rock Strength**

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index  $I_{S(50)}$  is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

| Strength Term  | Abbreviation | Unconfined Compressive<br>Strength MPa | Point Load Index *<br>Is <sub>(50)</sub> MPa |
|----------------|--------------|----------------------------------------|----------------------------------------------|
| Very low       | VL           | 0.6 - 2                                | 0.03 - 0.1                                   |
| Low            | L            | 2 - 6                                  | 0.1 - 0.3                                    |
| Medium         | М            | 6 - 20                                 | 0.3 - 1.0                                    |
| High           | Н            | 20 - 60                                | 1 - 3                                        |
| Very high      | VH           | 60 - 200                               | 3 - 10                                       |
| Extremely high | EH           | >200                                   | >10                                          |

\* Assumes a ratio of 20:1 for UCS to  $I_{S(50)}$ . It should be noted that the UCS to  $I_{S(50)}$  ratio varies significantly for different rock types and specific ratios should be determined for each site.

#### Degree of Weathering

The degree of weathering of rock is classified as follows:

| Term                    | Abbreviation          | Description                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Residual Soil           | RS                    | Material is weathered to such an extent that it has soil<br>properties. Mass structure and material texture and fabric<br>of original rock are no longer visible, but the soil has not<br>been significantly transported.                                                                                                                                                                                 |
| Extremely weathered     | XW                    | Material is weathered to such an extent that it has soil<br>properties. Mass structure and material texture and fabric<br>of original rock are still visible                                                                                                                                                                                                                                              |
| Highly weathered        | HW                    | The whole of the rock material is discoloured, usually by<br>iron staining or bleaching to the extent that the colour of the<br>original rock is not recognisable. Rock strength is<br>significantly changed by weathering. Some primary<br>minerals have weathered to clay minerals. Porosity may be<br>increased by leaching, or may be decreased due to<br>deposition of weathering products in pores. |
| Moderately<br>weathered | MW                    | The whole of the rock material is discoloured, usually by<br>iron staining or bleaching to the extent that the colour of the<br>original rock is not recognisable, but shows little or no<br>change of strength from fresh rock.                                                                                                                                                                          |
| Slightly weathered      | SW                    | Rock is partially discoloured with staining or bleaching<br>along joints but shows little or no change of strength from<br>fresh rock.                                                                                                                                                                                                                                                                    |
| Fresh                   | FR                    | No signs of decomposition or staining.                                                                                                                                                                                                                                                                                                                                                                    |
| Note: If HW and MW      | cannot be differentia | nted use DW (see below)                                                                                                                                                                                                                                                                                                                                                                                   |
| Distinctly weathered    | DW                    | Rock strength usually changed by weathering. The rock<br>may be highly discoloured, usually by iron staining.<br>Porosity may be increased by leaching or may be<br>decreased due to deposition of weathered products in<br>pores.                                                                                                                                                                        |

## **Rock Descriptions**

#### **Degree of Fracturing**

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

| Term               | Description                                                             |
|--------------------|-------------------------------------------------------------------------|
| Fragmented         | Fragments of <20 mm                                                     |
| Highly Fractured   | Core lengths of 20-40 mm with occasional fragments                      |
| Fractured          | Core lengths of 30-100 mm with occasional shorter and longer sections   |
| Slightly Fractured | Core lengths of 300 mm or longer with occasional sections of 100-300 mm |
| Unbroken           | Core contains very few fractures                                        |

#### **Rock Quality Designation**

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = <u>cumulative length of 'sound' core sections > 100 mm long</u> total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

#### **Stratification Spacing**

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

| Term                | Separation of Stratification Planes |
|---------------------|-------------------------------------|
| Thinly laminated    | < 6 mm                              |
| Laminated           | 6 mm to 20 mm                       |
| Very thinly bedded  | 20 mm to 60 mm                      |
| Thinly bedded       | 60 mm to 0.2 m                      |
| Medium bedded       | 0.2 m to 0.6 m                      |
| Thickly bedded      | 0.6 m to 2 m                        |
| Very thickly bedded | > 2 m                               |

# Symbols & Abbreviations

#### Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

#### **Drilling or Excavation Methods**

| С    | Core drilling            |
|------|--------------------------|
| R    | Rotary drilling          |
| SFA  | Spiral flight augers     |
| NMLC | Diamond core - 52 mm dia |
| NQ   | Diamond core - 47 mm dia |
| HQ   | Diamond core - 63 mm dia |
| PQ   | Diamond core - 81 mm dia |

#### Water

| $\triangleright$   | Water seep  |
|--------------------|-------------|
| $\bigtriangledown$ | Water level |

#### Sampling and Testing

- A Auger sample
- B Bulk sample
- D Disturbed sample
- E Environmental sample
- U<sub>50</sub> Undisturbed tube sample (50mm)
- W Water sample
- pp Pocket penetrometer (kPa)
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test
- V Shear vane (kPa)

#### **Description of Defects in Rock**

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

#### **Defect Type**

| Bedding plane   |
|-----------------|
| Clay seam       |
| Cleavage        |
| Crushed zone    |
| Decomposed seam |
| Fault           |
| Joint           |
| Lamination      |
| Parting         |
| Sheared Zone    |
| Vein            |
|                 |

#### Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

- h horizontal
- v vertical
- sh sub-horizontal

ari

sv sub-vertical

#### Coating or Infilling Term

| clean    |
|----------|
| coating  |
| healed   |
| infilled |
| stained  |
| tight    |
| veneer   |
|          |

#### **Coating Descriptor**

| ca  | calcite      |
|-----|--------------|
| cbs | carbonaceous |
| cly | clay         |
| fe  | iron oxide   |
| mn  | manganese    |
| slt | silty        |
|     |              |

#### Shape

| cu | curved     |
|----|------------|
| ir | irregular  |
| pl | planar     |
| st | stepped    |
| un | undulating |

#### Roughness

| ро | polished     |
|----|--------------|
| ro | rough        |
| sl | slickensided |
| sm | smooth       |
| vr | very rough   |

#### Other

| fg  | fragmented |
|-----|------------|
| bnd | band       |
| qtz | quartz     |

# Symbols & Abbreviations

#### **Graphic Symbols for Soil and Rock**

#### General

| A. A. A. Z |  |
|------------|--|
|            |  |

Asphalt Road base

Concrete

Filling

#### Soils



Topsoil Peat

Clay

Silty clay

Sandy clay

Gravelly clay

Shaly clay

Silt

Clayey silt

Sandy silt

Sand

Clayey sand

Silty sand

Gravel

Sandy gravel

Cobbles, boulders

Talus

#### **Sedimentary Rocks**



#### **Metamorphic Rocks**

Slate, phyllite, schist

Quartzite

Gneiss

### **Igneous Rocks**

Granite

Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry





#### APPENDIX C: LANDSLIDE RISK ASSESSMENT

#### QUALITATIVE TERMINOLOGY FOR USE IN ASSESSING RISK TO PROPERTY

#### **QUALITATIVE MEASURES OF LIKELIHOOD**

| Approximate A<br>Indicative<br>Value | nnual Probability<br>Notional<br>Boundary | Implied Indicative Landslide<br>Recurrence Interval |                         | Description                                                                             | Descriptor      | Level |
|--------------------------------------|-------------------------------------------|-----------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------|-----------------|-------|
| 10-1                                 | 5x10 <sup>-2</sup>                        | 10 years                                            | •                       | The event is expected to occur over the design life.                                    | ALMOST CERTAIN  | А     |
| 10 <sup>-2</sup>                     | $5 \times 10^{-3}$                        | 100 years                                           | 20 years                | The event will probably occur under adverse conditions over the design life.            | LIKELY          | В     |
| 10-3                                 |                                           | 1000 years                                          | 200 years<br>2000 years | The event could occur under adverse conditions over the design life.                    | POSSIBLE        | С     |
| 10-4                                 | $5 \times 10^{-4}$                        | 10,000 years                                        | 2000 vears              | The event might occur under very adverse circumstances over the design life.            | UNLIKELY        | D     |
| 10-5                                 | 5x10 <sup>-5</sup><br>5x10 <sup>-6</sup>  | 100,000 years                                       |                         | The event is conceivable but only under exceptional circumstances over the design life. | RARE            | Е     |
| 10-6                                 | 5x10                                      | 1,000,000 years                                     | 200,000 years           | The event is inconceivable or fanciful over the design life.                            | BARELY CREDIBLE | F     |

Note: (1) The table should be used from left to right; use Approximate Annual Probability or Description to assign Descriptor, not vice versa.

#### **QUALITATIVE MEASURES OF CONSEQUENCES TO PROPERTY**

|                     | Approximate Cost of Damage Description |                                                                                                                                                                                                 | Descriptor    |   |
|---------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---|
| Indicative<br>Value | Notional<br>Boundary                   |                                                                                                                                                                                                 |               |   |
| 200%                | 1000/                                  | Structure(s) completely destroyed and/or large scale damage requiring major engineering works for stabilisation. Could cause at least one adjacent property major consequence damage.           | CATASTROPHIC  | 1 |
| 60%                 | 100%<br>40%                            | Extensive damage to most of structure, and/or extending beyond site boundaries requiring significant stabilisation works. Could cause at least one adjacent property medium consequence damage. | MAJOR         | 2 |
| 20%                 | 40%                                    | Moderate damage to some of structure, and/or significant part of site requiring large stabilisation works.<br>Could cause at least one adjacent property minor consequence damage.              | MEDIUM        | 3 |
| 5%                  | 1%                                     | Limited damage to part of structure, and/or part of site requiring some reinstatement stabilisation works.                                                                                      | MINOR         | 4 |
| 0.5%                | 170                                    | Little damage. (Note for high probability event (Almost Certain), this category may be subdivided at a notional boundary of 0.1%. See Risk Matrix.)                                             | INSIGNIFICANT | 5 |

Notes: (2) The Approximate Cost of Damage is expressed as a percentage of market value, being the cost of the improved value of the unaffected property which includes the land plus the unaffected structures.

(3) The Approximate Cost is to be an estimate of the direct cost of the damage, such as the cost of reinstatement of the damaged portion of the property (land plus structures), stabilisation works required to render the site to tolerable risk level for the landslide which has occurred and professional design fees, and consequential costs such as legal fees, temporary accommodation. It does not include additional stabilisation works to address other landslides which may affect the property.

(4) The table should be used from left to right; use Approximate Cost of Damage or Description to assign Descriptor, not vice versa

#### APPENDIX C: – QUALITATIVE TERMINOLOGY FOR USE IN ASSESSING RISK TO PROPERTY (CONTINUED)

| LIKELIHOOD          |                                                          | CONSEQUENCES TO PROPERTY (With Indicative Approximate Cost of Damage) |                 |                  |                |                             |
|---------------------|----------------------------------------------------------|-----------------------------------------------------------------------|-----------------|------------------|----------------|-----------------------------|
|                     | Indicative Value of<br>Approximate Annual<br>Probability | 1: CATASTROPHIC<br>200%                                               | 2: MAJOR<br>60% | 3: MEDIUM<br>20% | 4: MINOR<br>5% | 5:<br>INSIGNIFICANT<br>0.5% |
| A – ALMOST CERTAIN  | $10^{-1}$                                                | VH                                                                    | VH              | VH               | Н              | M or <b>L</b> (5)           |
| B - LIKELY          | $10^{-2}$                                                | VH                                                                    | VH              | Н                | М              | L                           |
| C - POSSIBLE        | 10-3                                                     | VH                                                                    | Н               | М                | М              | VL                          |
| D - UNLIKELY        | 10 <sup>-4</sup>                                         | Н                                                                     | М               | L                | L              | VL                          |
| E - RARE            | 10-5                                                     | М                                                                     | L               | L                | VL             | VL                          |
| F - BARELY CREDIBLE | 10 <sup>-6</sup>                                         | L                                                                     | VL              | VL               | VL             | VL                          |

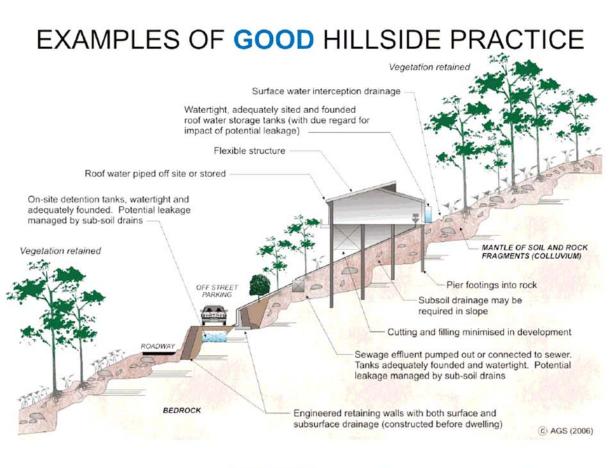
#### QUALITATIVE RISK ANALYSIS MATRIX – LEVEL OF RISK TO PROPERTY

Notes: (5) For Cell A5, may be subdivided such that a consequence of less than 0.1% is Low Risk.

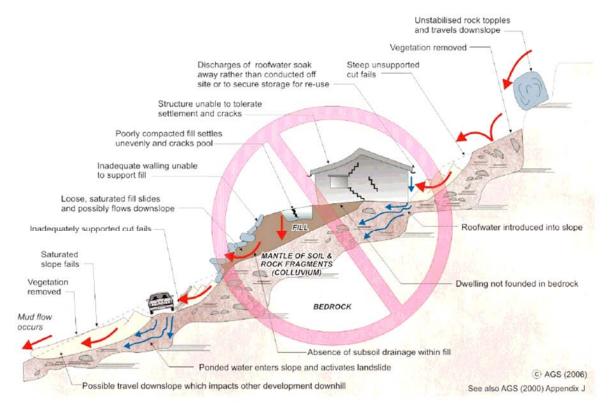
(6) When considering a risk assessment it must be clearly stated whether it is for existing conditions or with risk control measures which may not be implemented at the current time.

#### **RISK LEVEL IMPLICATIONS**

|    | Risk Level     | Example Implications (7)                                                                                                                                                                                                                                                  |
|----|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VH | VERY HIGH RISK | Unacceptable without treatment. Extensive detailed investigation and research, planning and implementation of treatment options essential to reduce risk to Low; may be too expensive and not practical. Work likely to cost more than value of the property.             |
| Н  | HIGH RISK      | Unacceptable without treatment. Detailed investigation, planning and implementation of treatment options required to reduce risk to Low. Work would cost a substantial sum in relation to the value of the property.                                                      |
| М  | MODERATE RISK  | May be tolerated in certain circumstances (subject to regulator's approval) but requires investigation, planning and implementation of treatment options to reduce the risk to Low. Treatment options to reduce to Low risk should be implemented as soon as practicable. |
| L  | LOW RISK       | Usually acceptable to regulators. Where treatment has been required to reduce the risk to this level, ongoing maintenance is required.                                                                                                                                    |
| VL | VERY LOW RISK  | Acceptable. Manage by normal slope maintenance procedures.                                                                                                                                                                                                                |


Note: (7) The implications for a particular situation are to be determined by all parties to the risk assessment and may depend on the nature of the property at risk; these are only given as a general guide.

#### APPENDIX G - SOME GUIDELINES FOR HILLSIDE CONSTRUCTION


#### **GOOD ENGINEERING PRACTICE**

#### POOR ENGINEERING PRACTICE

|                                     | GOOD ENGINEERING PRACTICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | POOR ENGINEERING PRACTICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ADVICE                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| GEOTECHNICAL                        | Obtain advice from a qualified, experienced geotechnical practitioner at early                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prepare detailed plan and start site works before                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ASSESSMENT                          | stage of planning and before site works.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | geotechnical advice.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PLANNING                            | The fact that the state of the | $\mathbf{D}_{1} = 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$ |
| SITE PLANNING                       | Having obtained geotechnical advice, plan the development with the risk arising from the identified hazards and consequences in mind.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Plan development without regard for the Risk.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DESIGN AND CONS                     | STRUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| HOUSE DESIGN                        | Use flexible structures which incorporate properly designed brickwork, timber or steel frames, timber or panel cladding. Consider use of split levels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Floor plans which require extensive cutting and filling.<br>Movement intolerant structures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SITE CLEARING                       | Use decks for recreational areas where appropriate.<br>Retain natural vegetation wherever practicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Indiscriminately clear the site.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ACCESS &<br>DRIVEWAYS               | Satisfy requirements below for cuts, fills, retaining walls and drainage.<br>Council specifications for grades may need to be modified.<br>Driveways and parking areas may need to be fully supported on piers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Excavate and fill for site access before geotechnical advice.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EARTHWORKS                          | Retain natural contours wherever possible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Indiscriminatory bulk earthworks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CUTS                                | Minimise depth.<br>Support with engineered retaining walls or batter to appropriate slope.<br>Provide drainage measures and erosion control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Large scale cuts and benching.<br>Unsupported cuts.<br>Ignore drainage requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FILLS                               | Minimise height.<br>Strip vegetation and topsoil and key into natural slopes prior to filling.<br>Use clean fill materials and compact to engineering standards.<br>Batter to appropriate slope or support with engineered retaining wall.<br>Provide surface drainage and appropriate subsurface drainage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Loose or poorly compacted fill, which if it fails<br>may flow a considerable distance including<br>onto property below.<br>Block natural drainage lines.<br>Fill over existing vegetation and topsoil.<br>Include stumps, trees, vegetation, topsoil<br>boulders, building rubble etc in fill.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ROCK OUTCROPS                       | Remove or stabilise boulders which may have unacceptable risk.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Disturb or undercut detached blocks or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| & Boulders<br>RETAINING<br>WALLS    | Support rock faces where necessary.<br>Engineer design to resist applied soil and water forces.<br>Found on rock where practicable.<br>Provide subsurface drainage within wall backfill and surface drainage on slope<br>above.<br>Construct wall as soon as possible after cut/fill operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | boulders.<br>Construct a structurally inadequate wall such as<br>sandstone flagging, brick or unreinforced<br>blockwork.<br>Lack of subsurface drains and weepholes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| FOOTINGS                            | Found within rock where practicable.<br>Use rows of piers or strip footings oriented up and down slope.<br>Design for lateral creep pressures if necessary.<br>Backfill footing excavations to exclude ingress of surface water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Found on topsoil, loose fill, detached boulder or undercut cliffs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SWIMMING POOLS                      | Engineer designed.<br>Support on piers to rock where practicable.<br>Provide with under-drainage and gravity drain outlet where practicable.<br>Design for high soil pressures which may develop on uphill side whilst there<br>may be little or no lateral support on downhill side.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DRAINAGE                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SURFACE                             | Provide at tops of cut and fill slopes.<br>Discharge to street drainage or natural water courses.<br>Provide general falls to prevent blockage by siltation and incorporate silt traps.<br>Line to minimise infiltration and make flexible where possible.<br>Special structures to dissipate energy at changes of slope and/or direction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Discharge at top of fills and cuts.<br>Allow water to pond on bench areas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SUBSURFACE                          | Provide filter around subsurface drain.<br>Provide drain behind retaining walls.<br>Use flexible pipelines with access for maintenance.<br>Prevent inflow of surface water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Discharge roof runoff into absorption trenches.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SEPTIC &<br>Sullage                 | Usually requires pump-out or mains sewer systems; absorption trenches may<br>be possible in some areas if risk is acceptable.<br>Storage tanks should be water-tight and adequately founded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Discharge sullage directly onto and into slopes<br>Use absorption trenches without consideration<br>of landslide risk.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| EROSION<br>CONTROL &<br>LANDSCAPING | Control erosion as this may lead to instability.<br>Revegetate cleared area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Failure to observe earthworks and drainage recommendations when landscaping.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DRAWINGS AND S                      | ITE VISITS DURING CONSTRUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DRAWINGS                            | Building Application drawings should be viewed by geotechnical consultant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SITE VISITS                         | Site Visits by consultant may be appropriate during construction/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| INSPECTION AND                      | MAINTENANCE BY OWNER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| OWNER'S<br>RESPONSIBILITY           | Clean drainage systems; repair broken joints in drains and leaks in supply nines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| KEOI ONOIDILIT I                    | pipes.<br>Where structural distress is evident see advice.<br>If seepage observed, determine causes or seek advice on consequences.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



# EXAMPLES OF **POOR** HILLSIDE PRACTICE



# Appendix B

Borehole Logs (Bores 1 to 8) Borehole Logs (Bores 101 to 112) Borehole Logs (Bore 201 to 214) Borehole Log (Bore 1001) Core Photoplates (Bores 1 to 3)

SURFACE LEVEL: 110.317 AHD BORE No: 01

CLIENT: Lake Macquarie City Council PROJECT: Preliminary Geotechnical and Contamination Inv EAS LOCATION: 31-33 Smith Street, Charlestown

| EASTING:   | 378183         |
|------------|----------------|
| NORTHING:  | 6351826        |
| DIP/AZIMUT | <b>H:</b> 90°/ |

**PROJECT No: 81563 DATE:** 2/8/2014 SHEET 1 OF 3

| $\square$ |              | Description                                                                                                                                                                                                      | Degree of<br>Weathering | .cj                | Rock<br>Strength                                     | Fracture                                                                                     | Discontinuities                                                                           |      |          |          | In Situ Testing                     |
|-----------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------|----------|----------|-------------------------------------|
| 님         | Depth<br>(m) | of                                                                                                                                                                                                               | 3                       | Graphic<br>Log     | [ ] ] [ ] [ ] [ ] [                                  | Spacing<br>(m)                                                                               | B - Bedding J - Joint                                                                     | Type | Sre<br>% | RQD<br>% | Test Results<br>&                   |
|           | . ,          | Strata                                                                                                                                                                                                           | HW HW SW FR FS          | G                  | Ex Low<br>Very Low<br>Medium<br>Very High<br>Ex High | 0.01<br>0.10<br>0.50<br>1.00                                                                 | S - Shear D - Drill Break                                                                 | Γ    | U S S    | Я°,      | Comments                            |
| 110       | 0.02         | ASPHALT - 20mm thick //<br>FILLING - Generally comprising<br>(medium dense) light grey fine to<br>medium sized subangular, gravelly<br>fine to medium grained sand                                               |                         | $\bigotimes$       |                                                      |                                                                                              |                                                                                           | А    |          |          | <1 ppm                              |
|           | 0.4          | FILLING - Generally comprising<br>(medium dense) red-brown fine to<br>medium sized subangular, gravelly<br>fine to medium grained sand                                                                           |                         |                    |                                                      |                                                                                              |                                                                                           | A    |          |          | <1 ppm                              |
|           | - 1          | CLAY - Stiff to very stiff brown<br>mottled light grey clay, slightly<br>silty, M>Wp                                                                                                                             |                         |                    |                                                      |                                                                                              |                                                                                           | A    |          |          | pp = 180-300<br><1 ppm              |
| 109       | 1.1          | CLAYEY SAND - Dense, grey fine<br>grained clayey sand, humid<br>(extremely weathered sandstone)                                                                                                                  |                         |                    |                                                      |                                                                                              |                                                                                           | s    |          |          | 4,12,12<br>N = 24<br><1 ppm         |
|           |              | From 1.4m, 300mm interbedded<br>red and grey bands, strength<br>generally increasing with depth                                                                                                                  |                         |                    |                                                      |                                                                                              |                                                                                           |      |          |          |                                     |
| 108       | -2           |                                                                                                                                                                                                                  |                         |                    |                                                      |                                                                                              |                                                                                           |      |          |          |                                     |
|           | 2.8          |                                                                                                                                                                                                                  |                         |                    |                                                      |                                                                                              |                                                                                           | s    |          |          | 18,27,bouncing<br>refusal<br><1 ppm |
| 107       | -3           | SANDSTONE - Medium strength,<br>highly weathered, red-brown fine<br>grained sandstone                                                                                                                            |                         |                    |                                                      |                                                                                              | 2.95m: P, sh, pl, sm<br>3.07m: J, 35°, pl, sm,<br>1mm clay infill<br>3.11m: P, sh, pl, ro | С    | 100      | 96       | PL(A) = 0.45<br>PL(D) = 0.45        |
|           | 3.47         | CONGLOMERATE - Medium<br>strength, moderately weathered,<br>orange fine to medium sized<br>subangular / subrounded<br>conglomerate with fine to medium                                                           |                         |                    |                                                      | ; ;; <b>L</b> ;;<br>; ;; <b>L</b> ;<br>; ;; <b>L</b> ;<br>; ;; <b>L</b> ;<br>; ;; <b>L</b> ; | 3.45m: Bp, 5-10°, un,<br>sm                                                               |      |          |          | PL(A) = 0.59<br>PL(D) = 0.45        |
|           | -4 4.0       | grained sand<br>CORE LOSS - 0.13m (4.0 to 4.13)                                                                                                                                                                  |                         | )oc                |                                                      |                                                                                              | 4m: CORE LOSS:<br>130mm                                                                   |      |          |          | · =\ <i>5)</i> = 0. <del>1</del> 0  |
|           | 4.13<br>4.25 | CONGLOMERATE - Extremely<br>low strength, extremely<br>weathered, brown fine to medium<br>sized subangular conglomerate<br>CONGLOMERATE - High<br>strength, moderately weathered,<br>orange fine to coarse sized |                         |                    |                                                      |                                                                                              | 4.35m: J, 10°, w, ro<br>4.43m: P, 5°, un, ro                                              | С    | 86       | 91       |                                     |
|           |              | subangular conglomerate with fine<br>to medium grained sand                                                                                                                                                      |                         | ) 0<br>0<br>0<br>0 |                                                      |                                                                                              |                                                                                           | с    | 100      | 85       | PL(A) = 1.4<br>PL(D) = 1.3          |

RIG: Scout 2

DRILLER: Total (Whyte) LOGGED: Fulham CASING: HQ to 2.5

TYPE OF BORING: Solid flight augar to 2.5m, rock roller to 2.8m, NMLC to 10.15m WATER OBSERVATIONS: Groundwater observation obscured by introduction of drilling fluid REMARKS: 10% water loss from 5.8m

|   | SAMP                 | LIN | G & IN SITU TESTING     | LEC  | GEND                                     |             |       |                      |
|---|----------------------|-----|-------------------------|------|------------------------------------------|-------------|-------|----------------------|
| 1 | Auger sample         | G   | Gas sample              | PID  | Photo ionisation detector (ppm)          |             |       |                      |
| E | Bulk sample          | Ρ   | Piston sample           | PL(A | ) Point load axial test Is(50) (MPa)     | Barra       | -     | <b>Partners</b>      |
| E | LK Block sample      | U,  | Tube sample (x mm dia.) | PL(D | ) Point load diametral test Is(50) (MPa) |             | 126   | Darthorg             |
| 0 | Core drilling        | Ŵ   | Water sample            | pp   | Pocket penetrometer (kPa)                | DUUY        | 143   | rai uici j           |
| 1 | Disturbed sample     | ⊳   | Water seep              | S    | Standard penetration test                |             |       |                      |
| E | Environmental sample | Ŧ   | Water level             | V    | Shear vane (kPa)                         | Geotechnics | Envir | onment   Groundwater |
|   |                      |     |                         |      |                                          | <br>        |       |                      |

SURFACE LEVEL: 110.317 AHD BORE No: 01

CLIENT:Lake Macquarie City CouncilSURFACE LEVEL: 11PROJECT:Preliminary Geotechnical and Contamination InvEASTING:378183LOCATION:31-33 Smith Street, CharlestownNORTHING:6351826

NORTHING: 6351826 DIP/AZIMUTH: 90°/-- PROJECT No: 81563 DATE: 2/8/2014 SHEET 2 OF 3

| Π                                     |              | Description                                                                                                                                                                                                 | Degree of<br>Weathering<br>≞ ≩ ≩ § ღ ৼ | lic          | Rock<br>Strength                                                       | Fracture                                              | Discontinuities                                                                                                                | Sa   |             | -        | n Situ Testing               |
|---------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------|------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------|-------------|----------|------------------------------|
| R                                     | Depth<br>(m) | of                                                                                                                                                                                                          |                                        | sraph<br>Log | Ex Low<br>Very Low<br>Low<br>Medium<br>Very High<br>Ex High<br>Ex High | Spacing<br>(m)                                        | B - Bedding J - Joint                                                                                                          | Type | ore<br>c. % | RQD<br>% | Test Results<br>&            |
|                                       |              | Strata                                                                                                                                                                                                      |                                        |              | Very<br>Very<br>Very<br>Ex High                                        | 0.05 0.10 0.50 1.00 1.00 0.50 1.00 0.50 1.00 0.50 0.5 | S - Shear D - Drill Break                                                                                                      | L L  | й ё<br>М    | ж,       | Comments                     |
|                                       |              | CONGLOMERATE - High<br>strength, moderately weathered,<br>orange fine to coarse sized<br>subangular conglomerate with fine<br>to medium grained sand<br>( <i>continued</i> )<br>From 5.37m, medium strength |                                        |              |                                                                        |                                                       | 5.25m: -5, 25°, pl, ro<br>5.35m: P, sh, pl, ro<br>5.44m: P, sh, un, ro,<br>clay infill<br>5.52m: P, sh, un, ro,<br>clay infill | С    | 100         | 85       |                              |
|                                       | - 6          | From 5.76m to 5.9m, sandstone band                                                                                                                                                                          |                                        |              |                                                                        |                                                       | 0.07.0 D 5 400 i                                                                                                               |      |             |          | PL(A) = 0.63<br>PL(D) = 0.71 |
| 104                                   | ·<br>·<br>·  |                                                                                                                                                                                                             |                                        |              |                                                                        |                                                       | 6.07m: P, 5-10°, ir, ro                                                                                                        |      |             |          |                              |
| <br><br>                              | - 7<br>- 7   | From 7.0m, low to medium strength                                                                                                                                                                           |                                        |              |                                                                        |                                                       |                                                                                                                                | С    | 100         | 100      | PL(A) = 0.55<br>PL(D) = 0.61 |
|                                       |              |                                                                                                                                                                                                             |                                        |              |                                                                        |                                                       |                                                                                                                                |      |             |          | PL(A) = 0.4<br>PL(D) = 0.27  |
| 102                                   | - 8          |                                                                                                                                                                                                             |                                        |              |                                                                        |                                                       |                                                                                                                                |      |             |          | PL(A) = 0.28<br>PL(D) = 0.45 |
| · · · · · · · · · · · · · · · · · · · | -9           |                                                                                                                                                                                                             |                                        |              |                                                                        |                                                       | 9.17m: J, 10°, pl, ro clay<br>infill                                                                                           | С    | 100         | 100      | PL(A) = 0.41<br>PL(D) = 0.26 |

RIG: Scout 2

DRILLER: Total (Whyte)

LOGGED: Fulham

CASING: HQ to 2.5

TYPE OF BORING:Solid flight augar to 2.5m, rock roller to 2.8m, NMLC to 10.15mWATER OBSERVATIONS:Groundwater observation obscured by introduction of drilling fluidREMARKS:10% water loss from 5.8m

| SAM                    | PLIN | G & IN SITU TESTING     | ELEC | GEND                                     |                |    |                                         |
|------------------------|------|-------------------------|------|------------------------------------------|----------------|----|-----------------------------------------|
| A Auger sample         | G    | Gas sample              | PID  | Photo ionisation detector (ppm)          |                |    |                                         |
| B Bulk sample          | Р    | Piston sample           | PL(A | ) Point load axial test Is(50) (MPa)     |                |    | Douglas Partners                        |
| BLK Block sample       | U,   | Tube sample (x mm dia.) | PL(C | ) Point load diametral test Is(50) (MPa) |                | 1. | Nundiae Partnere                        |
| C Core drilling        | Ŵ    | Water sample            | pp   | Pocket penetrometer (kPa)                |                |    |                                         |
| D Disturbed sample     | ⊳    | Water seep              | S    | Standard penetration test                |                | 11 |                                         |
| E Environmental sample | ¥    | Water level             | V    | Shear vane (kPa)                         | and the second |    | Geotechnics   Environment   Groundwater |
|                        |      |                         |      |                                          |                |    |                                         |

SURFACE LEVEL: 110.317 AHD BORE No: 01

CLIENT:Lake Macquarie City CouncilSURFACEPROJECT:Preliminary Geotechnical and Contamination InvEASTING

LOCATION: 31-33 Smith Street, Charlestown

| EASTING:   | 378183         |
|------------|----------------|
| NORTHING:  | 6351826        |
| DIP/AZIMUT | <b>H:</b> 90°/ |

PROJECT No: 81563 DATE: 2/8/2014 SHEET 3 OF 3

| Π                |              | Description                                         | De       | egre | e of   | Graphic |       | F    | Very Low<br>High<br>Kery High<br>Ex High<br>Acater |           | F          | ract  | ure  | Discor     | ntinuities | Sa          | ampli           | ng & | In Situ Testing                                                                                  |           |                   |
|------------------|--------------|-----------------------------------------------------|----------|------|--------|---------|-------|------|----------------------------------------------------|-----------|------------|-------|------|------------|------------|-------------|-----------------|------|--------------------------------------------------------------------------------------------------|-----------|-------------------|
| R                | Depth<br>(m) | of                                                  |          | aur  | Criniç | raph.   |       |      |                                                    |           | -<br>ullus | Water | S    | pac<br>(m) | )          | B - Bedding |                 | Type | sre<br>%                                                                                         | RQD<br>%  | Test Results<br>& |
|                  | . ,          | Strata                                              | ≥ ≥<br>E | Ň    | S S L  | Ϋ́      | Ex Lo | Very | Medic                                              | <br>년<br> | EX Hi      | >     | 0.01 | 0.05       | 0.50       | S - Shear   | D - Drill Break | Ļ    | U<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S | Я°<br>ОЯ° | Comments          |
|                  | 10.15        |                                                     |          |      |        | 67      |       |      |                                                    |           |            |       |      |            |            |             |                 | с    | 100                                                                                              | 100       |                   |
| -                | 10.15        | Bore discontinued at 10.15m, limit of investigation |          |      |        | •       |       |      | 1                                                  |           |            | 1 [   | 1    |            |            |             |                 |      |                                                                                                  |           |                   |
| -6               |              |                                                     |          |      |        |         |       |      | Ì                                                  |           | Ì          |       | Ì    |            |            |             |                 |      |                                                                                                  |           |                   |
|                  |              |                                                     | ļ        | ij   | ij     |         |       |      | ļ                                                  | ļļ        | į          |       | į    |            |            |             |                 |      |                                                                                                  |           |                   |
| -                |              |                                                     |          |      |        |         |       |      |                                                    |           |            |       |      |            |            |             |                 |      |                                                                                                  |           |                   |
| + [              |              |                                                     |          |      |        |         |       |      | 1                                                  |           |            |       |      |            |            |             |                 |      |                                                                                                  |           |                   |
|                  |              |                                                     | ļ        | İİ   | İİ     |         |       |      | İ                                                  | İİ        | İ          |       | į    | İİ         | İİ         |             |                 |      |                                                                                                  |           |                   |
| + +              | - 11         |                                                     | ļ        | ij   | ij     |         |       |      | ļ                                                  | ij        | į          |       | į.   | ij.        | ij         |             |                 |      |                                                                                                  |           |                   |
| + [              |              |                                                     |          |      |        |         |       |      |                                                    |           |            |       |      |            |            |             |                 |      |                                                                                                  |           |                   |
| -66              |              |                                                     |          |      |        |         |       |      |                                                    |           |            |       |      |            |            |             |                 |      |                                                                                                  |           |                   |
| + +              |              |                                                     |          |      |        |         |       |      |                                                    |           |            |       |      |            |            |             |                 |      |                                                                                                  |           |                   |
|                  |              |                                                     |          |      |        |         |       |      | i                                                  |           | İ          |       | i    |            |            |             |                 |      |                                                                                                  |           |                   |
|                  |              |                                                     |          |      |        |         |       |      |                                                    |           |            |       |      |            |            |             |                 |      |                                                                                                  |           |                   |
| + +              |              |                                                     |          |      |        |         |       |      |                                                    |           |            |       |      |            |            |             |                 |      |                                                                                                  |           |                   |
|                  | - 12         |                                                     |          |      |        |         |       |      |                                                    |           |            |       |      |            |            |             |                 |      |                                                                                                  |           |                   |
| -                |              |                                                     |          |      |        |         |       |      |                                                    |           |            |       |      |            |            |             |                 |      |                                                                                                  |           |                   |
| ł                |              |                                                     | ļ        | ii   | İİ     |         |       |      | į.                                                 |           | į          |       | į.   | ii.        | ij.        |             |                 |      |                                                                                                  |           |                   |
| -8               |              |                                                     |          |      |        |         |       |      | ļ                                                  |           |            |       |      |            |            |             |                 |      |                                                                                                  |           |                   |
| -                |              |                                                     |          |      |        |         |       |      |                                                    |           |            |       |      |            |            |             |                 |      |                                                                                                  |           |                   |
| ł                |              |                                                     |          |      |        |         |       |      |                                                    |           |            |       | 1    |            |            |             |                 |      |                                                                                                  |           |                   |
| ļ                |              |                                                     | ļį       | ij   | İİ     |         |       |      | į                                                  | İİ        | į          |       | į.   | ij.        | ii         |             |                 |      |                                                                                                  |           |                   |
| -                |              |                                                     |          |      |        |         |       |      | ļ                                                  |           | ļ          |       | ļ    |            |            |             |                 |      |                                                                                                  |           |                   |
| + [              | - 13         |                                                     |          |      |        |         |       |      |                                                    |           |            |       |      |            |            |             |                 |      |                                                                                                  |           |                   |
|                  |              |                                                     |          |      |        |         |       |      |                                                    |           |            |       |      |            |            |             |                 |      |                                                                                                  |           |                   |
| -6               |              |                                                     |          |      |        |         |       |      | Ì                                                  |           | Ì          |       | Ì    |            |            |             |                 |      |                                                                                                  |           |                   |
|                  |              |                                                     |          |      |        |         |       |      | İ                                                  |           | İ          |       | Ì    |            | ii         |             |                 |      |                                                                                                  |           |                   |
|                  |              |                                                     |          |      |        |         |       |      |                                                    |           |            |       |      |            |            |             |                 |      |                                                                                                  |           |                   |
| $\left  \right $ |              |                                                     |          |      |        |         |       |      |                                                    | <br>      |            |       |      |            |            |             |                 |      |                                                                                                  |           |                   |
|                  |              |                                                     |          |      |        |         |       |      |                                                    |           |            |       |      |            |            |             |                 |      |                                                                                                  |           |                   |
|                  | - 14         |                                                     | Í.       | İİ   | ii     |         | İ     |      |                                                    |           |            |       | 1    | ii<br>II   | ii         |             |                 |      |                                                                                                  |           |                   |
| $\frac{1}{2}$    |              |                                                     |          |      |        |         |       |      |                                                    | L I       | 1          |       | 1    |            |            |             |                 |      |                                                                                                  |           |                   |
| - 96             |              |                                                     |          |      |        |         | 1     |      |                                                    |           |            |       |      |            |            |             |                 |      |                                                                                                  |           |                   |
| -                |              |                                                     |          |      |        |         |       |      |                                                    | <br>      |            |       |      |            |            |             |                 |      |                                                                                                  |           |                   |
|                  |              |                                                     |          |      |        |         |       |      | İ.                                                 | 11        | 1          |       |      |            |            |             |                 |      |                                                                                                  |           |                   |
|                  |              |                                                     |          |      |        |         |       |      | İ.                                                 |           | 1          |       | Ì.   |            |            |             |                 |      |                                                                                                  |           |                   |
|                  |              |                                                     |          |      |        |         | Ì     |      |                                                    |           |            |       | Ì.   |            | 11         |             |                 |      |                                                                                                  |           |                   |
|                  |              |                                                     |          |      |        |         |       |      |                                                    |           |            |       |      |            |            |             |                 |      |                                                                                                  |           |                   |

RIG: Scout 2

DRILLER: Total (Whyte)

LOGGED: Fulham

CASING: HQ to 2.5

**TYPE OF BORING:** Solid flight augar to 2.5m, rock roller to 2.8m, NMLC to 10.15m **WATER OBSERVATIONS:** Groundwater observation obscured by introduction of drilling fluid **REMARKS:** 10% water loss from 5.8m

|   | SAMP                 | LIN            | G & IN SITU TESTING     | ) LEC | GEND                                     |      |                                         |
|---|----------------------|----------------|-------------------------|-------|------------------------------------------|------|-----------------------------------------|
|   | A Auger sample       | G              | Gas sample              | PID   | Photo ionisation detector (ppm)          |      |                                         |
|   | Bulk sample          | Р              | Piston sample           | PL(A  | A) Point load axial test Is(50) (MPa)    |      | Douglas Partners                        |
|   | 3LK Block sample     | U <sub>x</sub> | Tube sample (x mm dia.) | PL(D  | ) Point load diametral test Is(50) (MPa) |      | Dollalae Partnere                       |
|   | Core drilling        | Ŵ              | Water sample            | pp    | Pocket penetrometer (kPa)                |      |                                         |
|   | D Disturbed sample   | ⊳              | Water seep              | S     | Standard penetration test                |      |                                         |
|   | Environmental sample | Ŧ              | Water level             | V     | Shear vane (kPa)                         |      | Geotechnics   Environment   Groundwater |
| _ |                      |                |                         |       |                                          | <br> |                                         |

SURFACE LEVEL: 107.28 AHD BORE No: 02 **PROJECT:** Preliminary Geotechnical and Contamination Inv **EASTING:** 378148 **NORTHING:** 6351784

DIP/AZIMUTH: 90°/--

**PROJECT No: 81563 DATE:** 2/8/2014 SHEET 1 OF 3

| -        |              | Description                                                                                                                                                   | Degree of<br>Weathering ≌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rock<br>Strength                                                                                                                                      | Fracture                     | Discontinuities           | Sa       |           | -          | In Situ Testin                  |
|----------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------|----------|-----------|------------|---------------------------------|
| 10       | Depth<br>(m) | of                                                                                                                                                            | Degree of<br>Weathering<br>Caphic<br>O and<br>Date<br>O and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D and<br>D a | Strendth<br>Very Low<br>Very High<br>Very High<br>Very High<br>Very High<br>Very High<br>Very High<br>Very High<br>Very High<br>Very High<br>Very Low | Spacing<br>(m)               | B - Bedding J - Joint     | Type     | sre<br>%; | RQD<br>%   | Test Result<br>&                |
|          | . ,          |                                                                                                                                                               | G<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | High<br>Kery<br>Very                                                                                                                                  | 0.05<br>0.10<br>0.50<br>1.00 | S - Shear D - Drill Break | Ļ        | ပိမ္ခ     | <u>я</u> , | Comment                         |
| -        | 0.15-        | FILLING - Generally comprising<br>dark brown silty sand topsoil filling<br>with trace brick fragments up to<br>5mm in diameter                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |                              |                           | A<br>A   |           |            | <1ppm<br><1ppm                  |
| -        | 0.4-         | FILLING - Generally comprising<br>brown silty sand filling with some<br>fine size subrounded gravel (brick<br>and asphalt fragments)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |                              |                           | A        |           |            | <1ppm                           |
| _        | 0.8-         | SANDY CLAY - Brown, fine to<br>medium grained sandy clay,<br>slightly silty, M <wp (possible<br="">filling)</wp>                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |                              |                           |          |           |            | 200.0                           |
| - 1<br>- | 1            | SANDY CLAY - Hard, orange<br>mottled light grey fine grained<br>sandy clay with some silt                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |                              |                           | <u> </u> |           |            | pp = 330-34<br><1ppm<br>8,19,24 |
| -        |              | From 1.2, grading to rock                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |                              |                           | S        |           |            | N = 43<br><1ppm                 |
|          |              |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |                              |                           |          |           |            |                                 |
|          |              |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |                              |                           |          |           |            |                                 |
| 2        | 2            |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |                              |                           |          |           |            |                                 |
|          |              |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |                              |                           |          |           |            |                                 |
|          | 2.5-         | CORE LOSS - 0.32 (2.5m to 2.82m)                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |                              | 2.5m: CORE LOSS:<br>320mm |          |           |            |                                 |
| - 3      | 2.82-<br>3   | SANDSTONE - Extremely low<br>strength, extremely weathered,<br>brown mottled orange-rd and light                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |                              |                           | с        | 68        | 0          |                                 |
|          | _            | grey sandstone (friable)                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |                              |                           |          |           |            |                                 |
|          | 3.5-         | From 3.41m, subangular /<br>subrounded gravel (extremely<br>weathered conglomerate) up to<br>25mm in diameter                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |                              | 3.5m: CORE LOSS:<br>350mm |          |           |            |                                 |
|          | 3.85         | CORE LOSS - 0.35m (3.5m to<br>3.85m)<br>SANDSTONE - Extremely low                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |                              |                           | с        | 51        | 0          |                                 |
| - 4      | 4            | strength, extremely weathered,<br>brown mottled orange-rd and light<br>grey sandstone (friable)                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |                              |                           |          | 51        |            |                                 |
|          | 4.27<br>4.36 | CORE LOSS - 0.09m (4.27m to<br>\4.36m)                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |                              | 4.27m: CORE LOSS:<br>90mm |          |           |            |                                 |
|          |              | CONGLOMERATE - High<br>strength, moderately weathered<br>brown conglomerate with fine to<br>medium grained sand and fine to<br>coarse sized subrounded gravel |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |                              | 4.8m: P, sh, un, sm, fe   | с        | 100       | 100        |                                 |
| ,        |              |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |                              | 4.011. F, SH, UH, SHI, IC |          |           |            |                                 |

RIG: Scout 2

CLIENT:

Lake Macquarie City Council

LOCATION: 31-33 Smith Street, Charlestown

DRILLER: Total (Whyte) TYPE OF BORING: Solid flight augar to 2.5m, NMLC to 11.64m LOGGED: Fulham

CASING: HQ to 2

WATER OBSERVATIONS: Groundwater observation obscured by introduction of drilling fluid **REMARKS:** 

|   | SAMF                 | PLIN | G & IN SITU TESTING     | LEC  | GEND                                     | ] |   |                                         |
|---|----------------------|------|-------------------------|------|------------------------------------------|---|---|-----------------------------------------|
| A | Auger sample         | G    | Gas sample              | PID  | Photo ionisation detector (ppm)          |   |   |                                         |
| E | Bulk sample          | Р    | Piston sample           | PL(A | ) Point load axial test Is(50) (MPa)     |   |   | Douglas Partners                        |
| E | LK Block sample      | U,   | Tube sample (x mm dia.) | PL(D | ) Point load diametral test Is(50) (MPa) |   |   | I DAlidiae Parthere                     |
| 0 | Core drilling        | Ŵ    | Water sample            | pp   | Pocket penetrometer (kPa)                |   |   |                                         |
| E | Disturbed sample     | ⊳    | Water seep              | S    | Standard penetration test                |   |   |                                         |
| E | Environmental sample | Ŧ    | Water level             | V    | Shear vane (kPa)                         |   | 1 | Geotechnics   Environment   Groundwater |
|   |                      |      |                         |      |                                          |   |   |                                         |

SURFACE LEVEL: 107.28 AHD BORE No: 02 PROJECT: Preliminary Geotechnical and Contamination Inv EASTING: 378148 NORTHING: 6351784 DIP/AZIMUTH: 90°/--

**PROJECT No: 81563 DATE:** 2/8/2014 SHEET 2 OF 3

| Γ |                                                                                             | Description                                                                                                                                                                                                           | Degree of Weathering                               | Rock<br>Strength                               | Fracture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Discontinuities                                    | Sa   | mplir          | ng & I   | In Situ Testing                                             |
|---|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------|----------------|----------|-------------------------------------------------------------|
| Ē | Depth<br>(m)                                                                                | of<br>Strata                                                                                                                                                                                                          | Degree of<br>Weathering<br>Graphic<br>O<br>Graphic | Very Low<br>Medium<br>High<br>Ex High<br>Water | Spacing<br>(m)<br>90.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.000 | B - Bedding J - Joint<br>S - Shear D - Drill Break | Type | Core<br>Rec. % | RQD<br>% | Test Results<br>&<br>Comments                               |
|   |                                                                                             | CONGLOMERATE - High<br>strength, moderately weathered<br>brown conglomerate with fine to<br>medium grained sand and fine to<br>coarse sized subrounded gravel<br>(continued)<br>From 5.2m, medium to high<br>strength |                                                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.53m: P, 5°, un, ro                               | с    | 100            |          | PL(A) = 2.4<br>PL(D) = 2.3                                  |
| - | -<br>-<br>- 6<br>-                                                                          |                                                                                                                                                                                                                       |                                                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.77m: P, 2°, un, ro, fe                           |      |                |          | PL(A) = 0.94<br>PL(D) = 1.4                                 |
| - | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | From 6.2m, medium strength                                                                                                                                                                                            |                                                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.17m: P, 2°, un, ro, fe                           | С    | 100            | 100      | PL(A) = 0.31<br>PL(D) = 0.35                                |
|   | -<br>-<br>-<br>-<br>-<br>-<br>8<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                | From 7.72m, fresh, grey<br>From 8.00 to 9.5m, conglomerate<br>infilled with exteremly low strength,<br>white claystone                                                                                                |                                                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |      |                |          | PL(A) = 0.9<br>PL(D) = 0.52<br>PL(A) = 0.67<br>PL(D) = 0.47 |
|   | -<br>-9<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                              |                                                                                                                                                                                                                       |                                                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | >>                                                 | С    | 100            | 100      | PL(A) = 0.37<br>PL(D) = 0.41                                |

RIG: Scout 2

CLIENT:

Lake Macquarie City Council

LOCATION: 31-33 Smith Street, Charlestown

DRILLER: Total (Whyte)

LOGGED: Fulham

CASING: HQ to 2

TYPE OF BORING: Solid flight augar to 2.5m, NMLC to 11.64m WATER OBSERVATIONS: Groundwater observation obscured by introduction of drilling fluid **REMARKS:** 

|     | SAM                  | PLIN | G & IN SITU TESTING     | LE   | GEND                                     |   |                                         |
|-----|----------------------|------|-------------------------|------|------------------------------------------|---|-----------------------------------------|
| A   | Auger sample         | G    | Gas sample              | PID  | Photo ionisation detector (ppm)          |   |                                         |
| В   | Bulk sample          | Р    | Piston sample           | PL(A | A) Point load axial test Is(50) (MPa)    |   | Douglas Partners                        |
| BLł | K Block sample       | U,   | Tube sample (x mm dia.) | PL(  | ) Point load diametral test Is(50) (MPa) |   | Indialas Partners                       |
| C   | Core drilling        | Ŵ    | Water sample            | pp   | Pocket penetrometer (kPa)                |   |                                         |
| D   | Disturbed sample     | ⊳    | Water seep              | S    | Standard penetration test                |   |                                         |
| E   | Environmental sample | ¥    | Water level             | V    | Shear vane (kPa)                         |   | Geotechnics   Environment   Groundwater |
|     |                      |      |                         |      |                                          | _ |                                         |

Lake Macquarie City Council

LOCATION: 31-33 Smith Street, Charlestown

CLIENT: PROJECT:

SURFACE LEVEL: 107.28 AHD BORE No: 02 Preliminary Geotechnical and Contamination Inv EASTING: 378148 **NORTHING:** 6351784

DIP/AZIMUTH: 90°/--

**PROJECT No: 81563 DATE:** 2/8/2014 SHEET 3 OF 3

| Γ |                                                                                 | Description                                                                                                                                                                  | Degree of<br>Weathering |            | Rock<br>Strength                                                             | Fracture           | Discontinuities                                    | 50   | moli     | 20.8     | In Situ Testing                          |
|---|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------|------------------------------------------------------------------------------|--------------------|----------------------------------------------------|------|----------|----------|------------------------------------------|
|   | Depth                                                                           | Description<br>of                                                                                                                                                            | Weathering              | ohic<br>og | Strength                                                                     | Spacing            |                                                    |      |          | -        | -                                        |
| ľ | <u>r</u> (m)                                                                    | Strata                                                                                                                                                                       | >>>>                    | Gra        | Strength<br>Very Low<br>Very High<br>High<br>Kery High<br>Vary High<br>Water | وی مع <sub>ح</sub> | B - Bedding J - Joint<br>S - Shear D - Drill Break | Type | Core     | RQD<br>% | &                                        |
| - |                                                                                 | CONGLOMERATE - High<br>strength, moderately weathered<br>brown conglomerate with fine to<br>medium grained sand and fine to<br>coarse sized subrounded gravel<br>(continued) |                         |            |                                                                              |                    |                                                    |      | <u>~</u> |          | Comments<br>PL(A) = 0.63<br>PL(D) = 0.52 |
|   | - 11<br>- 11<br>%.<br>                                                          |                                                                                                                                                                              |                         |            |                                                                              |                    |                                                    | С    | 100      | 100      | PL(A) = 0.24<br>PL(D) = 0.34             |
| ł | 11.6                                                                            | <sup>4</sup> Bore discontinued at 11.64m, limit<br>of investigation                                                                                                          |                         | -          |                                                                              |                    |                                                    |      |          |          |                                          |
|   | -<br>- 12<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                                                                                                                                              |                         |            |                                                                              |                    |                                                    |      |          |          |                                          |
| ŀ | - 13<br>-                                                                       |                                                                                                                                                                              |                         |            |                                                                              |                    |                                                    |      |          |          |                                          |
|   |                                                                                 |                                                                                                                                                                              |                         |            |                                                                              |                    |                                                    |      |          |          |                                          |
|   | - 14                                                                            |                                                                                                                                                                              |                         |            |                                                                              |                    |                                                    |      |          |          |                                          |
|   | - 33                                                                            |                                                                                                                                                                              |                         |            |                                                                              |                    |                                                    |      |          |          |                                          |
|   | -                                                                               |                                                                                                                                                                              |                         |            |                                                                              |                    |                                                    |      |          |          |                                          |

RIG: Scout 2

DRILLER: Total (Whyte)

LOGGED: Fulham

CASING: HQ to 2

TYPE OF BORING: Solid flight augar to 2.5m, NMLC to 11.64m WATER OBSERVATIONS: Groundwater observation obscured by introduction of drilling fluid **REMARKS:** 

|    | S                 | SAMPL | .IN | G & IN SITU TESTIN      | G LEO | GEND                                     | ]                                     |          |    |           |     |     |     |            |   |       |         |
|----|-------------------|-------|-----|-------------------------|-------|------------------------------------------|---------------------------------------|----------|----|-----------|-----|-----|-----|------------|---|-------|---------|
| Α  | Auger sample      |       | G   | Gas sample              | PID   | Photo ionisation detector (ppm)          |                                       |          |    |           |     |     |     |            |   |       |         |
| В  | Bulk sample       |       | Р   | Piston sample           | PL(A  | A) Point load axial test Is(50) (MPa)    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |          |    | ou        | -   |     |     |            |   |       |         |
| BL | < Block sample    |       | U,  | Tube sample (x mm dia.) | PL(C  | ) Point load diametral test Is(50) (MPa) |                                       | $\Gamma$ |    |           |     | -   |     |            |   | TM    | orc     |
| С  | Core drilling     |       | Ŵ   | Water sample            | pp    | Pocket penetrometer (kPa)                |                                       | / /      |    |           |     | 23  |     | <b>– –</b> |   |       | CI 3    |
| D  | Disturbed sample  |       | ⊳   | Water seep              | S     | Standard penetration test                |                                       |          |    |           |     |     |     |            |   |       |         |
| E  | Environmental sam | nple  | Ŧ   | Water level             | V     | Shear vane (kPa)                         |                                       | ~        | Ge | otechnics | s / | Env | iro | nmen       | t | Grour | ndwater |
|    |                   |       |     |                         |       |                                          |                                       | _        |    |           |     |     |     |            |   |       |         |

SURFACE LEVEL: 107.3 AHD BORE No: 03 **PROJECT:** Preliminary Geotechnical and Contamination Inv **EASTING:** 378114 NORTHING: 6351829 DIP/AZIMUTH: 90°/--

**PROJECT No: 81563 DATE:** 3/8/2014 SHEET 1 OF 3

| Π   |                     |      | Description                                                                                                                                           | De        | egr       | ee o     | FR 6 phic<br>Graphic<br>Lod |        | Roc                    |                   |       |                               | racture                                                                    |     | Discor   | ntinuities      | Sa   | amplii | ng & I   | n Situ Testing               |
|-----|---------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|----------|-----------------------------|--------|------------------------|-------------------|-------|-------------------------------|----------------------------------------------------------------------------|-----|----------|-----------------|------|--------|----------|------------------------------|
| 님   | Dept<br>(m)         |      | of                                                                                                                                                    | vve       | al        | nenr     | aphi<br>o                   | Low C  |                        | igui<br>E         | Water | S                             | pacing<br>(m)                                                              | В-  | Bedding  | J - Joint       |      | · ·    | -        | Test Results                 |
|     | (11)                | '    | Strata                                                                                                                                                | <u> </u>  | s ≥       | SW<br>FS | _<br>ق<br>ا                 | Ex Low | ledium                 | High<br>Very<br>H |       | 0.01                          | (11)<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5 |     | Shear    | D - Drill Break | Type | C C    | RQD<br>% | &<br>Comments                |
| H   | 0                   | .03  | ASPHALT - 30mm thick                                                                                                                                  | <u>шт</u> | 1         | <u> </u> |                             | ш'>    |                        |                   |       |                               |                                                                            |     |          |                 |      |        |          | Commente                     |
| 107 | -                   | .35- | FILLING - Generally comprising<br>(dense) light grey fine to medium<br>sized subangular gravelly fine to<br>medium grained sand, humid                |           |           |          |                             |        |                        |                   |       |                               |                                                                            |     |          |                 | A    |        |          | <1pmm                        |
|     | -                   | 0.7- | FILLING - Generally comprising<br>(medium dense) brown fine to<br>coarse grained sand, with some<br>concrete, brick and tile fragments<br>\up to 30mm |           |           |          |                             |        |                        |                   |       |                               |                                                                            |     |          |                 | A    |        |          | <1pmm                        |
|     | -                   | 0.9  | CLAY - Light brown clay with some silt, (possibly filling, odour)                                                                                     |           | <br> <br> |          |                             |        |                        |                   |       | <br> <br>                     |                                                                            |     |          |                 | A    |        |          | <1pmm                        |
| 106 | - 1<br>-<br>-       |      | CLAYEY SAND - Dense, light grey<br>and red fine grained clayey sand<br>(extremely low to very low<br>strength, highly weathered<br>sandstone)         |           |           |          |                             |        |                        |                   |       |                               |                                                                            |     |          |                 | s    | -      |          | 10,22,26<br>N = 48<br><1pmm  |
|     | -                   |      | At 1.5m, V-bit refusal                                                                                                                                |           |           |          |                             |        |                        |                   |       |                               |                                                                            |     |          |                 |      |        |          |                              |
|     | -<br>-2<br>-        |      |                                                                                                                                                       |           |           |          |                             |        |                        |                   |       |                               |                                                                            |     |          |                 |      |        |          |                              |
|     | -                   |      | From 2.5m to 3.1m, medium dense, decreased drilling resistance (damp)                                                                                 |           |           |          |                             |        |                        |                   |       |                               |                                                                            |     |          |                 | s    |        |          | 7,6,9<br>N = 15<br><1ppm     |
|     | -3 :<br>-<br>-<br>- | 3.0- | CONGLOMERATE - Very low<br>strength, moderately weathered<br>light brown fine sized<br>conglomerate                                                   |           |           |          |                             |        |                        |                   |       |                               |                                                                            |     |          |                 | A    |        |          |                              |
|     | - :<br>-<br>-<br>-4 | 3.6- | CONGLOMERATE - High<br>strength, moderately weathered,<br>brown-orange fine to coarse sized<br>subangular conglomerate                                |           |           |          |                             |        | <br>     <br>     <br> |                   |       | + <b>L</b><br> <br> <br> <br> |                                                                            | 3.8 | 5m: J, 1 | 5°, ir, ro      |      |        |          | PL(A) = 1.3<br>PL(D) = 1.1   |
|     | -                   |      | From 4.5m, medium strength                                                                                                                            |           |           |          |                             |        |                        |                   |       |                               |                                                                            |     |          |                 | С    | 100    | 95       |                              |
|     | -                   |      |                                                                                                                                                       |           | <br> <br> |          | ) <i>o</i> (<br>  ) (       |        |                        |                   |       | <br> <br>                     |                                                                            |     |          |                 |      |        |          | PL(A) = 0.35<br>PL(D) = 0.91 |

RIG: Scout 2

CLIENT:

Lake Macquarie City Council

LOCATION: 31-33 Smith Street, Charlestown

DRILLER: Total (Whyte)

LOGGED: Fulham

CASING: HQ to 3.5

TYPE OF BORING: Solid flight augar to 3.6m, NMLC to 10.27m WATER OBSERVATIONS: Groundwater observation obscured by introduction of drilling fluid **REMARKS:** 

|     | SAM                  | PLIN | G & IN SITU TESTING     | LE   | GEND                                      |    |   |               |     |       |     |       |     |          |
|-----|----------------------|------|-------------------------|------|-------------------------------------------|----|---|---------------|-----|-------|-----|-------|-----|----------|
| A   | Auger sample         | G    | Gas sample              | PID  | Photo ionisation detector (ppm)           |    |   |               |     |       |     |       |     |          |
| B   | Bulk sample          | Р    | Piston sample           | PL(A | A) Point load axial test Is(50) (MPa)     |    |   | Doug          |     |       |     |       |     |          |
| BLK | Block sample         | U,   | Tube sample (x mm dia.) | PL(C | D) Point load diametral test Is(50) (MPa) |    |   |               |     |       |     |       |     | org      |
| С   | Core drilling        | Ŵ    | Water sample            | pp   | Pocket penetrometer (kPa)                 |    |   | Dudy          |     | 5     |     | a     |     |          |
| D   | Disturbed sample     | ⊳    | Water seep              | S    | Standard penetration test                 | 11 |   |               |     |       |     |       |     |          |
| E   | Environmental sample | Ŧ    | Water level             | V    | Shear vane (kPa)                          |    |   | Geotechnics   | I E | nvira | onm | ent I | Gro | undwater |
|     |                      |      |                         |      |                                           |    | _ | 0001001111100 |     |       |     |       | 0.0 | amanator |

SURFACE LEVEL: 107.3 AHD BORE No: 03 **PROJECT:** Preliminary Geotechnical and Contamination Inv **EASTING:** 378114 **NORTHING:** 6351829 DIP/AZIMUTH: 90°/--

**PROJECT No: 81563 DATE:** 3/8/2014 SHEET 2 OF 3

|     |                                       | Description                                                                                                                           | Degree of<br>Weathering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>.</u>     | Rock<br>Strength                                    | Fracture       | Discontinuities                                    | Sa   | mpli          | ng & I   | In Situ Testing                                            |
|-----|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------|----------------|----------------------------------------------------|------|---------------|----------|------------------------------------------------------------|
| R   | Depth<br>(m)                          | of<br>Strata                                                                                                                          | Degree of<br>Weathering<br>ﷺ ≩ ≹ ଛୁ ଝ ଝ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Graph<br>Log | EX Low Very Low Low Low Low Low Low Low Low Low Low | Spacing<br>(m) | B - Bedding J - Joint<br>S - Shear D - Drill Break | Type | Core<br>ec. % | RQD<br>% | Test Results<br>&                                          |
| 102 | -                                     | CONGLOMERATE - High<br>strength, moderately weathered,<br>brown-orange fine to coarse sized<br>subangular conglomerate<br>(continued) | I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I |              |                                                     |                |                                                    | С    | 100           |          |                                                            |
| 101 | - 6                                   |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                     |                | €.12m: J, 40°, pl, ro<br>€.18m: J, 35°, un, ro     |      |               |          | PL(A) = 1.4<br>PL(D) = 0.64                                |
| -   | - 7                                   | From 6.95m, fresh<br>From 7.05m to 7.51m, high                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                     |                |                                                    |      |               |          | PL(A) = 1.1<br>PL(D) = 0.94<br>PL(A) = 1.5<br>PL(D) = 0.68 |
|     | -                                     | strength, fine to medium grained<br>sandstone with interbedded gravel<br>bands, up to 30mm thick                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                     |                |                                                    | С    | 100           | 98       | PL(A) = 2.3<br>PL(D) = 1.5                                 |
|     | - 8<br>-<br>-<br>-<br>-<br>-          | From 8.4m to 9.5m, low strength                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                     |                | 8.74m: -8.93m,                                     |      |               |          | PL(A) = 0.13<br>PL(D) = 0.28                               |
|     | -<br>-9<br>-<br>-<br>-<br>-<br>-<br>- |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                     |                | fragmented                                         | С    | 100           | 88       | PL(A) = 0.32<br>PL(D) = 0.25                               |
| -   | -                                     |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6° (         |                                                     |                | 9.82m: J, 40°, pl, sm,<br>coal                     |      |               |          | PL(A) = 0.56                                               |
| _   |                                       |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                     |                |                                                    | _    | _             |          |                                                            |

RIG: Scout 2

CLIENT:

Lake Macquarie City Council

LOCATION: 31-33 Smith Street, Charlestown

**DRILLER:** Total (Whyte) TYPE OF BORING: Solid flight augar to 3.6m, NMLC to 10.27m LOGGED: Fulham

CASING: HQ to 3.5

WATER OBSERVATIONS: Groundwater observation obscured by introduction of drilling fluid **REMARKS**:

|   | SAMF                 | PLIN | G & IN SITU TESTING     | LEC  | GEND                                     |                |                                         |
|---|----------------------|------|-------------------------|------|------------------------------------------|----------------|-----------------------------------------|
|   | A Auger sample       | G    | Gas sample              | PID  | Photo ionisation detector (ppm)          |                |                                         |
| E | 3 Bulk sample        | Р    | Piston sample           | PL(A | ) Point load axial test Is(50) (MPa)     |                | <b>Douglas Partners</b>                 |
| E | 3LK Block sample     | U,   | Tube sample (x mm dia.) | PL(D | ) Point load diametral test Is(50) (MPa) |                | Dollaise Partnere                       |
| 0 | Core drilling        | Ŵ    | Water sample            | pp   | Pocket penetrometer (kPa)                |                |                                         |
| 1 | D Disturbed sample   | ⊳    | Water seep              | S    | Standard penetration test                |                |                                         |
| E | Environmental sample | Ŧ    | Water level             | V    | Shear vane (kPa)                         | and the second | Geotechnics   Environment   Groundwater |
| _ |                      |      |                         |      |                                          |                |                                         |

SURFACE LEVEL: 107.3 AHD BORE No: 03 Preliminary Geotechnical and Contamination Inv EASTING: 378114 **NORTHING:** 6351829 DIP/AZIMUTH: 90°/--

**PROJECT No: 81563 DATE:** 3/8/2014 SHEET 3 OF 3

| Π                |              | Description                        | De              | gre  | e of | Graphic<br>Log | 9                     | Ro | ck<br>ngth | ,    |      | Fract      | ure      | Discon      | ntinuities      | Sa       | amplii      | ng & l   | n Situ Testing          |
|------------------|--------------|------------------------------------|-----------------|------|------|----------------|-----------------------|----|------------|------|------|------------|----------|-------------|-----------------|----------|-------------|----------|-------------------------|
| R                | Depth<br>(m) | of                                 | 1000            | anne | ing  | Braphi<br>Log  | Ex Low<br>Very Low CD |    |            | High | Wate | Spac<br>(m | )        | B - Bedding |                 | Type     | ore<br>c. % | RQD<br>% | Test Results &          |
| $\square$        |              | Strata                             | N N<br>N N<br>N | M NS | S E  | 6              |                       |    | 빌릴         |      |      | 0.05       | 1.00     | S - Shear   | D - Drill Break | <u> </u> | U age       | 2        | Comments $PL(D) = 0.47$ |
|                  |              |                                    |                 |      |      | p (            |                       |    |            |      |      |            |          |             |                 | с        | 100         | 88       | ( )                     |
| 67               | 10.27        | Bore discontinued at 10.27m, limit |                 |      |      |                |                       |    |            |      |      |            |          |             |                 |          |             |          |                         |
|                  |              | of investigation                   |                 |      |      |                |                       |    |            |      |      |            |          |             |                 |          |             |          |                         |
| $\left  \right $ |              |                                    |                 |      |      |                |                       |    |            |      |      |            |          |             |                 |          |             |          |                         |
|                  |              |                                    |                 |      |      |                |                       |    |            |      |      |            |          |             |                 |          |             |          |                         |
| $\left  \right $ | - 11         |                                    |                 |      |      |                |                       |    |            |      |      |            |          |             |                 |          |             |          |                         |
|                  |              |                                    |                 |      |      |                |                       |    |            |      |      |            |          |             |                 |          |             |          |                         |
| - 96             |              |                                    |                 |      |      |                |                       |    |            |      |      |            |          |             |                 |          |             |          |                         |
|                  |              |                                    |                 |      |      |                |                       |    |            |      |      |            |          |             |                 |          |             |          |                         |
|                  | -            |                                    |                 |      |      |                |                       |    |            | İ    |      |            |          |             |                 |          |             |          |                         |
|                  |              |                                    |                 |      |      |                |                       |    |            |      |      |            |          |             |                 |          |             |          |                         |
| -                |              |                                    |                 |      |      |                |                       |    |            |      |      |            |          |             |                 |          |             |          |                         |
| ţ                | - 12         |                                    |                 |      |      |                |                       |    |            |      |      |            |          |             |                 |          |             |          |                         |
| -                |              |                                    |                 |      |      |                |                       |    |            |      |      |            |          |             |                 |          |             |          |                         |
| 95               |              |                                    |                 |      |      |                |                       |    |            |      |      |            |          |             |                 |          |             |          |                         |
| ł                |              |                                    |                 |      |      |                |                       |    |            |      |      |            |          |             |                 |          |             |          |                         |
|                  |              |                                    |                 |      |      |                |                       |    |            |      |      |            |          |             |                 |          |             |          |                         |
| t                |              |                                    |                 |      |      |                |                       |    |            |      |      |            |          |             |                 |          |             |          |                         |
| +                | - 13         |                                    |                 |      |      |                |                       |    |            |      |      |            |          |             |                 |          |             |          |                         |
|                  |              |                                    |                 |      |      |                |                       |    |            |      |      |            |          |             |                 |          |             |          |                         |
| -4               |              |                                    |                 |      |      |                |                       |    |            |      |      |            |          |             |                 |          |             |          |                         |
|                  |              |                                    |                 |      |      |                |                       |    |            |      |      |            |          |             |                 |          |             |          |                         |
|                  | -            |                                    |                 |      |      |                |                       |    |            | i    |      |            |          |             |                 |          |             |          |                         |
|                  | -            |                                    |                 |      |      |                |                       |    |            | İ    |      |            |          |             |                 |          |             |          |                         |
|                  | - 14         |                                    | İ               |      | İİ   |                |                       |    |            |      |      |            | ii<br>II |             |                 |          |             |          |                         |
|                  |              |                                    |                 |      |      |                |                       |    |            |      |      |            |          |             |                 |          |             |          |                         |
| 93               |              |                                    |                 |      |      |                |                       |    |            | 1    |      |            |          |             |                 |          |             |          |                         |
|                  |              |                                    | İ               |      | İİ   |                |                       |    |            | 1    |      |            |          |             |                 |          |             |          |                         |
|                  |              |                                    |                 |      |      |                |                       |    |            | 1    |      |            |          |             |                 |          |             |          |                         |
|                  |              |                                    |                 |      |      |                |                       |    |            | I.   |      |            |          |             |                 |          |             |          |                         |
|                  | -            |                                    |                 |      |      |                |                       |    |            |      |      |            |          |             |                 |          |             |          |                         |
| -                |              |                                    |                 |      |      |                |                       |    |            |      |      |            |          |             |                 |          |             |          |                         |

RIG: Scout 2

CLIENT:

PROJECT:

Lake Macquarie City Council

LOCATION: 31-33 Smith Street, Charlestown

DRILLER: Total (Whyte)

LOGGED: Fulham

CASING: HQ to 3.5

TYPE OF BORING: Solid flight augar to 3.6m, NMLC to 10.27m WATER OBSERVATIONS: Groundwater observation obscured by introduction of drilling fluid **REMARKS:** 

|    | SAI                  | MPLIN | IG & IN SITU TESTIN     | G LE |                                           | 7 |   |                    |                      |
|----|----------------------|-------|-------------------------|------|-------------------------------------------|---|---|--------------------|----------------------|
| Α  | Auger sample         | G     | Gas sample              | PID  | Photo ionisation detector (ppm)           |   |   |                    |                      |
| B  | Bulk sample          | P     | Piston sample           | PL(A | A) Point load axial test Is(50) (MPa)     |   |   |                    | Partners             |
| BL | K Block sample       | U,    | Tube sample (x mm dia.) | PL(C | D) Point load diametral test Is(50) (MPa) |   |   |                    | Dartner              |
| C  | Core drilling        | Ŵ     | Water sample            | pp   | Pocket penetrometer (kPa)                 |   |   | Dugias             |                      |
| D  | Disturbed sample     | ⊳     | Water seep              | S    | Standard penetration test                 |   |   |                    |                      |
| E  | Environmental sample | e 📱   | Water level             | V    | Shear vane (kPa)                          |   | 1 | Geotechnics   Envi | ronment   Groundwate |
|    |                      |       |                         |      |                                           |   | _ |                    | ennient i ereananat  |

SURFACE LEVEL: 108.23 AHD BORE No: 04 PROJECT: Preliminary Geotechnical and Contamination Inv EASTING: 378180 **NORTHING:** 6351783 DIP/AZIMUTH: 90°/--

**PROJECT No: 81563** DATE: 3/8/2014 SHEET 1 OF 1

|                |                    |           |                                                                                                                                                          |                |      |            |        | <b>II.</b> 90 /                          |       |                         |
|----------------|--------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|------------|--------|------------------------------------------|-------|-------------------------|
|                | De                 | nth       | Description                                                                                                                                              | hic            |      | Sam        |        | & In Situ Testing                        | 5     | Well                    |
| R              | n)<br>(n           | pth<br>n) | of<br>Strata                                                                                                                                             | Graphic<br>Log | Type | Depth      | Sample | Results &<br>Comments                    | Water | Construction<br>Details |
| , 108<br>, 108 |                    |           | FILLING - Generally comprising brown gravelly clay<br>filling, generally composed of fine to medium sized<br>brick fragments, M>Wp                       |                | A    | 0.2        |        | <1ppm                                    |       | -                       |
|                |                    | 0.55 -    | FILLING - Generally comprising dark grey fine grained<br>sandy clay / clayey sand filling with some fine sized<br>gravel (including some slag fragments) |                | A    | 0.5        |        | <1ppm                                    |       | -                       |
|                | - 1                | 0.95 -    | SANDY CLAY - Stiff to very stiff brown mottled light grey fine grained sandy clay, M>Wp                                                                  |                | A    | 0.9<br>1.0 |        | <1ppm                                    |       | - 1                     |
| 107            |                    |           |                                                                                                                                                          |                | S    | 1.45       |        | pp = 250-400<br>4,5,5<br>N = 10<br><1ppm |       | -                       |
|                | -<br>-<br>-        | 1.9-      |                                                                                                                                                          |                |      |            |        |                                          |       |                         |
|                | -2                 |           | CLAYEY SAND - Medium dense red, fine to medium<br>grained clayey sand (moist) (extremely weathered,<br>extremely low to very low strength sandstone)     |                | A    | 2.0        |        | <1ppm                                    |       | -2                      |
| 106            | -<br>-<br>-        |           | From 2.25m to 2.45m, firm light brown sandy gravel                                                                                                       |                | A    | 2.3<br>2.5 |        | <1ppm<br>pp = 100                        |       | -                       |
|                |                    |           |                                                                                                                                                          |                | S    | 2.05       |        | 5,11,20<br>N = 31                        |       | -                       |
| , 105 , 1      | - 3<br>-<br>-<br>- |           |                                                                                                                                                          |                |      | 2.95       |        |                                          |       | -3                      |
|                |                    | 3.5-      | SANDSTONE - Very low strength, moderately weathered, grey and red fine to medium grained sandstone                                                       |                |      |            |        |                                          |       | -                       |
| 104            | - 4                |           | At 4.0m, V-bit refusal                                                                                                                                   |                | S    | 4.0        |        | 18,24,27<br>N = 51<br><1ppm              |       | -4                      |
|                | •                  | 4.45 -    | Bore discontinued at 4.45m, limit of investigation                                                                                                       | 1              |      | -4.45-     |        |                                          |       |                         |
|                |                    |           |                                                                                                                                                          |                |      |            |        |                                          |       |                         |

RIG: Scout 2

DRILLER: Total (Whyte)

LOGGED: Fulham

CASING:

TYPE OF BORING: Solid flight augar to 4.0m WATER OBSERVATIONS: No free groundwater observed **REMARKS:** 

**SAMPLING & IN SITU TESTING LEGEND**  
 LING & IN SITU TESTING LEGEND

 G
 Gas sample

 PID
 Photo ionisation detector (ppm)

 P
 Piston sample

 U,
 Tube sample (x mm dia.)

 W
 Water sample

 D
 Vater seep

 S
 Standard penetration test

 ¥
 Water level

 V
 Shear vane (kPa)
 A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample



Lake Macquarie City Council CLIENT: LOCATION: 31-33 Smith Street, Charlestown

SURFACE LEVEL: 108.29 AHD BORE No: 05 PROJECT: Preliminary Geotechnical and Contamination Inv EASTING: 378157 NORTHING: 6351806 DIP/AZIMUTH: 90°/--

**PROJECT No: 81563** DATE: 1/8/2014 SHEET 1 OF 1

|                                             |               |                                                                                                                                     |                | ווט  |       |        | <b>H:</b> 90°/           |       | SHEET 1 OF 1            |
|---------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------|------|-------|--------|--------------------------|-------|-------------------------|
|                                             | Danth         | Description                                                                                                                         | hic            |      | Sam   |        | & In Situ Testing        | er l  | Well                    |
| RL                                          | Depth<br>(m)  | of<br>Strata                                                                                                                        | Graphic<br>Log | Type | Depth | Sample | Results & Comments       | Water | Construction<br>Details |
| 108                                         | 0.25          | FILLING - Grey-brown sandy gravel filling, fine to<br>coarse grained sand and fine sized subangular gravel<br>with some clay, moist |                | A    | 0.2   |        | <1ppm                    |       |                         |
|                                             | 0.35          | FILLING - Generally comprising brown clay filling with<br>trace fine sized gravel and trace silt                                    |                | A    | 0.5   |        | pp = 180-200<br><1ppm    |       |                         |
|                                             | 0.8           | CLAY - Stiff to very stiff, brown clay with some silt,<br>M>Wp                                                                      |                | A    | 0.85  |        | pp = 170<br><1ppm        |       |                         |
| 107                                         | 0.95 ·<br>- 1 | SANDSTONE - Very low strength, moderately<br>weathered, orange and light grey fine grained<br>sandstone                             |                | S    | 1.0   |        | 15,25,120<br>N = 145     |       | -1                      |
| · 106 · · · · · · · · · · · · · · · · · · · |               | From 1.5m, red                                                                                                                      |                |      |       |        |                          |       | -2                      |
|                                             |               | At 2.5m, V-bit refusal                                                                                                              |                | S    | 2.5   |        | 7,16,25/100mm<br>refusal |       | -<br>-<br>-             |
|                                             | 2.9<br>-3     | Bore discontinued at 2.9m, limit of investigation                                                                                   |                |      | -2.9- |        |                          |       | -3                      |
| 104 1 105 1 105                             |               |                                                                                                                                     |                |      |       |        |                          |       |                         |

RIG: Scout 2

CLIENT:

Lake Macquarie City Council

LOCATION: 31-33 Smith Street, Charlestown

**DRILLER:** Total (Whyte)

LOGGED: Fulham

CASING:

TYPE OF BORING: Solid flight augar to 2.5m WATER OBSERVATIONS: No free groundwater observed **REMARKS:** 

**SAMPLING & IN SITU TESTING LEGEND**  
 LING & IN SITU TESTING LEGEND

 G
 Gas sample

 PID
 Photo ionisation detector (ppm)

 P
 Piston sample

 U,
 Tube sample (x mm dia.)

 W
 Water sample

 D
 Vater seep

 S
 Standard penetration test

 ¥
 Water level

 V
 Shear vane (kPa)
 A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample



SURFACE LEVEL: 106.01 AHD BORE No: 06 PROJECT: Preliminary Geotechnical and Contamination Inv EASTING: 378124 **NORTHING:** 6351787 DIP/AZIMUTH: 90°/--

**PROJECT No: 81563** DATE: 1/8/2014 SHEET 1 OF 1

|      |                        |                                                                                                                                                                                                              | DIP/AZIMOTH: 90-7 |      |       |        |                          |       | SHEET TOP T             |  |  |
|------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------|-------|--------|--------------------------|-------|-------------------------|--|--|
|      | _                      | Description                                                                                                                                                                                                  | jc                |      | Sam   |        | & In Situ Testing        | Ļ     | Well                    |  |  |
| 6 RL | Depth<br>(m)           | of<br>Strata                                                                                                                                                                                                 | Graphic<br>Log    | Type | Depth | Sample | Results &<br>Comments    | Water | Construction<br>Details |  |  |
|      | 0.3                    | FILLING - Generally comprising brown fine to medium<br>grained sandy clay filling, slightly silty, M>Wp (possibly<br>natural)                                                                                |                   | A    | 0.2   |        | <1ppm                    |       | -                       |  |  |
|      |                        | SANDY CLAY / CLAYEY SAND - Medium dense / stiff,<br>brown fine to medium grained sandy clay / clayey<br>sand, M <wp< td=""><td></td><td>A</td><td>0.5</td><td></td><td>&lt;1ppm</td><td></td><td></td></wp<> |                   | A    | 0.5   |        | <1ppm                    |       |                         |  |  |
| 105  | - 1<br>-               | From 0.9m to 1.4m, light grey, decreased drilling resistance (damp, possibly from drain)                                                                                                                     |                   | S    | 1.0   |        | 4,6,7<br>N = 13<br>≺1ppm |       | - 1<br>- 1<br>          |  |  |
|      |                        | From 1.6m, red                                                                                                                                                                                               |                   |      | 1.45  |        |                          |       | -                       |  |  |
| 104  |                        | At 1.90m, V-bit refusal                                                                                                                                                                                      |                   |      |       |        |                          |       | -2                      |  |  |
|      | · 2.<br>. 2.           | SANDSTONE - Very low to low strength, moderately<br>weathered, fine to medium grained sandstone                                                                                                              |                   |      | -2.5- |        | 2,bouncing<br>refusal    |       | -                       |  |  |
|      | <br>-<br>-             | At 2.5m, TC-bit refusal<br>Bore discontinued at 2.5m, limit of investigation                                                                                                                                 |                   | S    | 2.0   |        | refusal                  |       | -                       |  |  |
| 103  | - 3                    |                                                                                                                                                                                                              |                   |      |       |        |                          |       | -3                      |  |  |
|      | -<br>-<br>-<br>-       |                                                                                                                                                                                                              |                   |      |       |        |                          |       |                         |  |  |
| 102  | ••<br>-<br>-<br>-<br>- |                                                                                                                                                                                                              |                   |      |       |        |                          |       |                         |  |  |
|      | -                      |                                                                                                                                                                                                              |                   |      |       |        |                          |       |                         |  |  |

RIG: Scout 2

CLIENT:

Lake Macquarie City Council

LOCATION: 31-33 Smith Street, Charlestown

**DRILLER:** Total (Whyte) TYPE OF BORING: Solid flight augar to 2.5m

LOGGED: Fulham

CASING:

WATER OBSERVATIONS: No free groundwater observed **REMARKS:** 

**SAMPLING & IN SITU TESTING LEGEND**  
 LING & IN SITU TESTING LEGEND

 G
 Gas sample

 PID
 Photo ionisation detector (ppm)

 P
 Piston sample

 U,
 Tube sample (x mm dia.)

 W
 Water sample

 D
 Vater seep

 S
 Standard penetration test

 ¥
 Water level

 V
 Shear vane (kPa)
 A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample



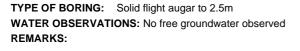
Lake Macquarie City Council

LOCATION: 31-33 Smith Street, Charlestown

CLIENT:

SURFACE LEVEL: 108.7 AHD BORE No: 07 PROJECT: Preliminary Geotechnical and Contamination Inv EASTING: 378141 **NORTHING:** 6351841 **DIP/AZIMUTH:** 90°/--

PROJECT No: 81563 DATE: 2/8/2014 SHEET 1 OF 1


| _                |              |       |                                                                                                                                               | DIP/AZIMOTH: 90 / |      |       |        |                       |       |              |  |  |
|------------------|--------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------|-------|--------|-----------------------|-------|--------------|--|--|
|                  |              |       | Description                                                                                                                                   | .c                |      | Sam   |        | & In Situ Testing     |       | Well         |  |  |
| R                | Depth<br>(m) |       | of                                                                                                                                            | Graphic<br>Log    | e    | oth   | Sample | Results &             | Water | Construction |  |  |
|                  | ()           |       | Strata                                                                                                                                        | ō                 | Type | Depth | Sam    | Results &<br>Comments | >     | Details      |  |  |
|                  | 0.03         | 3-    | ASPHALT - 30mm thick                                                                                                                          | $\times$          |      |       |        |                       |       |              |  |  |
|                  | 0.3          | 3–    | FILLING - Generally comprising (medium dense) light<br>grey fine to medium sized subangular gravelly, fine to<br>medium grained sand, filling | ×                 | A    | 0.2   |        | <1ppm                 |       | -            |  |  |
|                  |              |       | CLAY - Very stiff, brown clay with some silt, M>Wp (possibly filling), (odour)                                                                |                   | A    | 0.5   |        | pp = 250<br><1ppm     |       | -            |  |  |
| 108              | 0.7          | <br>ר | CLAYEY SAND - (dense) red clayey, fine to medium<br>grained sand, humid, (extremely weathered, very low<br>sandstone)                         |                   | A    | 0.8   |        | <1ppm                 |       | -            |  |  |
|                  | - 1          |       | At 0.8m, V- bit refusal                                                                                                                       |                   | _A_/ | 1.0   |        | <1ppm                 |       | -1           |  |  |
|                  |              |       |                                                                                                                                               |                   | S    |       |        | 8,14,21<br>N = 35     |       | -            |  |  |
|                  |              |       |                                                                                                                                               |                   |      | 1.45  |        |                       |       | -            |  |  |
| 107              |              |       |                                                                                                                                               |                   |      |       |        |                       |       | -            |  |  |
|                  |              |       |                                                                                                                                               |                   |      |       |        |                       |       |              |  |  |
|                  | -2           |       |                                                                                                                                               |                   |      |       |        |                       |       | -2           |  |  |
|                  |              |       |                                                                                                                                               |                   | A    | 2.35  |        | <1ppm                 |       | -            |  |  |
| tt               | 2.5          | 5     |                                                                                                                                               | 1. 1.             |      | -2.5- |        | 6/10mm,bouncing       |       |              |  |  |
|                  | 2            |       | Bore discontinued at 2.5m, refusal                                                                                                            |                   | S    | 2.51  |        | refusal               |       | -            |  |  |
| 106              |              |       |                                                                                                                                               |                   |      |       |        |                       |       | -            |  |  |
|                  |              |       |                                                                                                                                               |                   |      |       |        |                       |       | -            |  |  |
| }                | -3           |       |                                                                                                                                               |                   |      |       |        |                       |       | -3           |  |  |
|                  |              |       |                                                                                                                                               |                   |      |       |        |                       |       |              |  |  |
|                  |              |       |                                                                                                                                               |                   |      |       |        |                       |       | -            |  |  |
| + +              |              |       |                                                                                                                                               |                   |      |       |        |                       |       | -            |  |  |
|                  |              |       |                                                                                                                                               |                   |      |       |        |                       |       | -            |  |  |
| 62               |              |       |                                                                                                                                               |                   |      |       |        |                       |       |              |  |  |
| -                |              |       |                                                                                                                                               |                   |      |       |        |                       |       | -            |  |  |
| + +              |              |       |                                                                                                                                               |                   |      |       |        |                       |       | -            |  |  |
| łł               | - 4          |       |                                                                                                                                               |                   |      |       |        |                       |       | - 4          |  |  |
|                  |              |       |                                                                                                                                               |                   |      |       |        |                       |       |              |  |  |
|                  |              |       |                                                                                                                                               |                   |      |       |        |                       |       |              |  |  |
| $\left  \right $ |              |       |                                                                                                                                               |                   |      |       |        |                       |       | +            |  |  |
| + +              |              |       |                                                                                                                                               |                   |      |       |        |                       |       | - I          |  |  |
|                  |              |       |                                                                                                                                               |                   |      |       |        |                       |       |              |  |  |
| [ <sup>×</sup> ] |              |       |                                                                                                                                               |                   |      |       |        |                       |       |              |  |  |
| $\left  \right $ |              |       |                                                                                                                                               |                   |      |       |        |                       |       | - I          |  |  |
|                  |              |       |                                                                                                                                               |                   |      |       |        |                       |       |              |  |  |

RIG: Scout 2

DRILLER: Total (Whyte)

LOGGED: Fulham

CASING:



|   | SAMP                 | LIN            | <b>3 &amp; IN SITU TESTING</b> |       |                                        |
|---|----------------------|----------------|--------------------------------|-------|----------------------------------------|
| A | Auger sample         | G              | Gas sample                     | PID   | Photo ionisation detector (ppm)        |
| B | Bulk sample          | Р              | Piston sample                  | PL(A) | Point load axial test Is(50) (MPa)     |
|   | Block sample         | U <sub>x</sub> | Tube sample (x mm dia.)        |       | Point load diametral test Is(50) (MPa) |
| C | Core drilling        | w              | Water sample                   | pp    | Pocket penetrometer (kPa)              |
| D | Disturbed sample     | ⊳              | Water seep                     | S     | Standard penetration test              |
| E | Environmental sample | ž              | Water level                    | V     | Shear vane (kPa)                       |



Lake Macquarie City Council

LOCATION: 31-33 Smith Street, Charlestown

CLIENT:

SURFACE LEVEL: 107.08 AHD BORE No: 08 **PROJECT:** Preliminary Geotechnical and Contamination Inv EASTING: 378131 NORTHING: 6351802 DIP/AZIMUTH: 90°/--

**PROJECT No: 81563** DATE: 1/8/2014 SHEET 1 OF 1

|     |              |                                                                                                                                                                    |         |             |                    |        |                       |       | SHEET I OF I            |
|-----|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|--------------------|--------|-----------------------|-------|-------------------------|
|     |              | Description                                                                                                                                                        | ic      |             | San                |        | & In Situ Testing     | -     | Well                    |
| RL  | Depth<br>(m) | of<br>Strata                                                                                                                                                       | Graphic | Type        | Depth              | Sample | Results &<br>Comments | Water | Construction<br>Details |
| 107 | 0.05         | <ul> <li>FILLING - Generally comprising, grey fine to coarse<br/>grained sand filling with trace medium sized<br/>subangular / subrounded gravel, humid</li> </ul> |         | A           | 0.1                |        |                       |       | -                       |
| -   |              | FILLING - Generally comprising red-brown fine to<br>coarse grained sand filling with some concrete, brick<br>and tile fragments 10 to 50mm in diameter             |         |             | 0.3                |        | <1ppm                 |       | -                       |
| -   | 0.55<br>0.7  | SANDSTONE - Extremely low to very low strength,                                                                                                                    | XX<br>  | A<br>A<br>A | 0.5<br>0.55<br>0.6 |        | <1ppm<br><1ppm        |       | -                       |
|     |              | Bore discontinued at 0.7m, limit of investigation                                                                                                                  | _/      |             |                    |        |                       |       |                         |
| 106 | -1           |                                                                                                                                                                    |         |             |                    |        |                       |       | -1                      |
| -   |              |                                                                                                                                                                    |         |             |                    |        |                       |       | -                       |
| -   |              |                                                                                                                                                                    |         |             |                    |        |                       |       | -                       |
| -   |              |                                                                                                                                                                    |         |             |                    |        |                       |       | -                       |
| 105 | -2           |                                                                                                                                                                    |         |             |                    |        |                       |       | -2                      |
| -   |              |                                                                                                                                                                    |         |             |                    |        |                       |       | -                       |
| -   |              |                                                                                                                                                                    |         |             |                    |        |                       |       | -                       |
| -   |              |                                                                                                                                                                    |         |             |                    |        |                       |       | -                       |
| 104 | - 3          |                                                                                                                                                                    |         |             |                    |        |                       |       | -3                      |
| -   |              |                                                                                                                                                                    |         |             |                    |        |                       |       | -                       |
| -   |              |                                                                                                                                                                    |         |             |                    |        |                       |       | -                       |
| -   |              |                                                                                                                                                                    |         |             |                    |        |                       |       | -                       |
| 3   | -<br>- 4     |                                                                                                                                                                    |         |             |                    |        |                       |       | - 4                     |
| 103 |              |                                                                                                                                                                    |         |             |                    |        |                       |       |                         |
| -   |              |                                                                                                                                                                    |         |             |                    |        |                       |       |                         |
|     |              |                                                                                                                                                                    |         |             |                    |        |                       |       |                         |
| -   | -            |                                                                                                                                                                    |         |             |                    |        |                       |       |                         |

RIG: Hand Tools

DRILLER: Total (Whyte)

LOGGED: Fulham

CASING:

TYPE OF BORING: 90mm diameter hand auger WATER OBSERVATIONS: No free groundwater observed **REMARKS:** 

**SAMPLING & IN SITU TESTING LEGEND**  
 LING & IN SITU TESTING LEGEND

 G
 Gas sample

 PID
 Photo ionisation detector (ppm)

 P
 Piston sample

 U,
 Tube sample (x mm dia.)

 W
 Water sample

 D
 Vater seep

 S
 Standard penetration test

 ¥
 Water level

 V
 Shear vane (kPa)
 A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample



Lake Macquarie City Council

PROJECT: Detailed Site Investigation

LOCATION: 31-33 Smith Street, Charlestown

CLIENT:

SURFACE LEVEL: 107.63 AHD BORE No: 101 EASTING: 378119.7 NORTHING: 6351837.2 DIP/AZIMUTH: 90°/--

**PROJECT No:** 81563.01 **DATE:** 7/10/2014 SHEET 1 OF 1

| Π |        | Description                                                                                                                       | U              |             | Sam    | pling 8 | k In Situ Testing           |       | Well         |
|---|--------|-----------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|--------|---------|-----------------------------|-------|--------------|
| R | Depth  | of                                                                                                                                | Graphic<br>Log | e           |        |         |                             | Water | Construction |
|   | (m)    | Strata                                                                                                                            | Б<br>С         | Type        | Depth  | Sample  | Results & Comments          | >     | Details      |
| H | 0.03-  | ASPHALT                                                                                                                           |                |             |        | 0,      |                             |       |              |
| - |        | FILLING - Generally comprising grey, fine to medium grained gravelly sand filling, trace cobbles, moist                           |                | A, PID      | 0.1    | E       | PID<1                       |       | -            |
|   |        | From 0.2m, colour change to dark grey                                                                                             |                |             |        |         |                             |       | -            |
| - |        |                                                                                                                                   |                | A, PID      | 0.3    | E       | PID<1                       |       |              |
|   | 0.5 -  | FILLING - Generally comprising brown and yellow silty<br>sandy clay with trace ash/slag gravel, slight<br>hydrocarbon odour, M>Wp |                | A, PID      | 0.6    | Е       | PID=2                       |       |              |
| - | 0.9-   | SANDY CLAY - Very stiff, brown/yellow and mottled red sandy clay, M>Wp                                                            | $\bigvee$      |             |        |         |                             |       | -            |
|   | - 1    |                                                                                                                                   |                |             | 1.0    |         |                             |       | -1           |
| - |        | From 1.1m, grading to extremely low strength, extremely weathered sandstone                                                       |                | SPT,<br>PID |        | E       | 19,19,17<br>N = 36<br>PID<1 |       | -            |
|   | 1.45 - | Bore discontinued at 1.45m , limit of investigation                                                                               |                |             | -1.45- |         |                             | +     | -            |
|   | -2     | Bore discontinued at 1.45m , limit of investigation                                                                               |                |             |        |         |                             |       |              |

**RIG:** Truck mounted (TD104) DRILLER: Total Drilling LOGGED: Sebastian TYPE OF BORING: 100mm diameter solid flight auger with TC bit to 1.0m

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Survey co-ordinates and levels provided by Lake Macquarie City Council

|    | SAM                  | PLIN | G & IN SITU TESTING     | LEC  | GEND                                     |       |              |      |                       |
|----|----------------------|------|-------------------------|------|------------------------------------------|-------|--------------|------|-----------------------|
| A  | Auger sample         | G    | Gas sample              | PID  | Photo ionisation detector (ppm)          |       |              |      |                       |
| в  | Bulk sample          | Р    | Piston sample           | PL(A | ) Point load axial test Is(50) (MPa)     |       |              | _    |                       |
| BL | K Block sample       | U,   | Tube sample (x mm dia.) | PL(C | ) Point load diametral test Is(50) (MPa) |       |              | 126  | <b>Partners</b>       |
| C  | Core drilling        | Ŵ    | Water sample            | pp   | Pocket penetrometer (kPa)                |       | DUGG         | 103  | гаі шсі э             |
| D  | Disturbed sample     | ⊳    | Water seep              | S    | Standard penetration test                |       |              |      |                       |
| E  | Environmental sample | Ŧ    | Water level             | V    | Shear vane (kPa)                         |       | Geotechnics  | Envi | ronment   Groundwater |
|    |                      |      |                         |      | ,                                        | <br>_ | 000100111100 |      |                       |

SURFACE LEVEL: 110.28 AHD BORE No: 102 EASTING: 378176.8 **NORTHING:** 6351833.2 DIP/AZIMUTH: 90°/--

PROJECT No: 81563.01 DATE: 7/10/2014 SHEET 1 OF 1

| _  |              |                                                                                                            | _              |             |        |        | <b>II.</b> 90 /             |       |              |   |
|----|--------------|------------------------------------------------------------------------------------------------------------|----------------|-------------|--------|--------|-----------------------------|-------|--------------|---|
|    |              | Description                                                                                                | jic            |             | Sam    |        | & In Situ Testing           | -     | Well         |   |
| RL | Depth<br>(m) | of                                                                                                         | Graphic<br>Log | Type        | Depth  | Sample | Results &<br>Comments       | Water | Construction | n |
|    |              | Strata                                                                                                     | Ŭ              |             |        | Sa     | Comments                    |       | Details      |   |
|    | 0.03         | ASPHALT                                                                                                    | $\times$       |             |        |        |                             |       |              |   |
|    | -            | FILLING - Generally comprising grey, fine to medium<br>grained gravelly sand filling, trace cobbles, moist |                |             |        |        |                             |       | -            |   |
|    | -            |                                                                                                            |                | A, PID      | 0.2    | Е      | PID<1                       |       | -            |   |
|    | -            |                                                                                                            |                |             |        |        |                             |       | -            |   |
|    | -            | From 0.3m, colour change to red/brown                                                                      |                | A, PID      | 0.4    | Е      | PID<1                       |       | -            |   |
|    |              |                                                                                                            |                | ,           |        |        |                             |       |              |   |
|    | 0.55 -       | FILLING - Generally comprising gray and brown/vellow                                                       | $\bigotimes$   |             |        |        |                             |       | -            |   |
|    | -            | FILLING - Generally comprising grey and brown/yellow silty sandy clay with trace gravel, M>Wp              |                | A, PID      | 0.6    | E      | PID<1                       |       | -            |   |
|    | -            |                                                                                                            |                |             |        |        |                             |       | -            |   |
|    | - 0.8-       | SANDY CLAY - Stiff to very stiff, brown/yellow and                                                         |                |             |        |        |                             |       | -            |   |
|    | -            | mottled red sandy clay, M>wp                                                                               |                |             |        |        |                             |       | -            |   |
|    |              |                                                                                                            |                |             | 10     |        |                             |       |              |   |
|    | -1           |                                                                                                            |                |             | 1.0    |        |                             |       | - 1          |   |
|    | -            | From 1.1m, grading to extremely low strength, extremely weathered sandstone                                |                |             |        |        |                             |       | -            |   |
|    | -            | extremely weathered sandstone                                                                              |                | SPT,<br>PID |        | Е      | 11,13,14<br>N = 27<br>PID<1 |       | -            |   |
|    | -            |                                                                                                            |                | FID         |        |        | PID<1                       |       | -            |   |
|    | -            |                                                                                                            |                |             |        |        |                             |       | -            |   |
|    | 1.45         | Bore discontinued at 1.45m , limit of investigation                                                        | 1/1/           |             | -1.45- |        |                             |       |              |   |
|    | -            |                                                                                                            |                |             |        |        |                             |       | -            |   |
|    | -            |                                                                                                            |                |             |        |        |                             |       | -            |   |
|    | -            |                                                                                                            |                |             |        |        |                             |       | -            |   |
|    | -            |                                                                                                            |                |             |        |        |                             |       | -            |   |
|    | -            |                                                                                                            |                |             |        |        |                             |       | -            |   |
|    | _            |                                                                                                            |                |             |        |        |                             |       | 2            |   |
|    | -2           |                                                                                                            |                |             |        |        |                             |       | -2           |   |
|    | -            |                                                                                                            |                |             |        |        |                             |       | -            |   |
|    | -            |                                                                                                            |                |             |        |        |                             |       | -            |   |
|    | -            |                                                                                                            |                |             |        |        |                             |       | -            |   |
|    | -            |                                                                                                            |                |             |        |        |                             |       | -            |   |
|    |              |                                                                                                            |                |             |        |        |                             |       |              |   |
|    | -            |                                                                                                            |                |             |        |        |                             |       | -            |   |
|    | -            |                                                                                                            |                |             |        |        |                             |       | -            |   |
|    | -            |                                                                                                            |                |             |        |        |                             |       | -            |   |
|    | -            |                                                                                                            |                |             |        |        |                             |       | -            |   |
|    |              |                                                                                                            |                |             |        |        |                             |       |              |   |
|    |              |                                                                                                            |                |             |        |        |                             |       |              |   |
|    |              |                                                                                                            |                |             | L      |        | I                           |       | L            |   |

**RIG:** Truck mounted (TD104) DRILLER: Total Drilling LOGGED: Sebastian TYPE OF BORING: 100mm diameter solid flight auger with TC bit to 1.0m

WATER OBSERVATIONS: No free groundwater observed

CLIENT:

PROJECT:

Lake Macquarie City Council **Detailed Site Investigation** 

LOCATION: 31-33 Smith Street, Charlestown

REMARKS: Survey co-ordinates and levels provided by Lake Macquarie City Council

**SAMPLING & IN SITU TESTING LEGEND** A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample 
 LING & IN SITU TESTING LEGEND

 G Gas sample

 P Piston sample

 VTUDE sample (x mm dia.)

 VEL(A) Point load axial test Is(50) (MPa)

 W Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 <t **Douglas Partners** Geotechnics | Environment | Groundwater

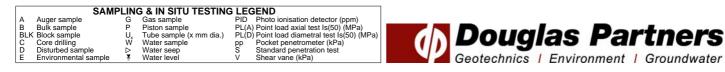
Lake Macquarie City Council

**Detailed Site Investigation** 

LOCATION: 31-33 Smith Street, Charlestown

CLIENT:

PROJECT:


SURFACE LEVEL: 109.06 AHD BORE No: 103 EASTING: 378162.8 **NORTHING:** 6351819.8 DIP/AZIMUTH: 90°/--

PROJECT No: 81563.01 DATE: 7/10/2014 SHEET 1 OF 1

|          |              |                                                                                                                                        |                |        |       |        | <b>II.</b> 90 /       |       |                         |  |  |
|----------|--------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|-------|--------|-----------------------|-------|-------------------------|--|--|
|          | Donth        | Description                                                                                                                            | hic            |        |       |        | & In Situ Testing     | er    | Well                    |  |  |
| RL       | Depth<br>(m) | of<br>Strata                                                                                                                           | Graphic<br>Log | Type   | Depth | Sample | Results &<br>Comments | Water | Construction<br>Details |  |  |
| $\vdash$ | 0.00         |                                                                                                                                        |                |        |       | Ő      |                       | _     |                         |  |  |
|          |              | ASPHALT<br>FILLING - Generally comprising grey, fine to medium<br>grained gravelly sand filling, some silt and trace<br>cobbles, moist |                | A, PID | 0.2   | E      | PID<1                 |       |                         |  |  |
|          | 0.6 -        | From 0.3m, change to red/brown                                                                                                         |                | A, PID | 0.5   | E      | PID=1                 |       | -                       |  |  |
|          | 0.75 -       | FILLING - Generally comprising dark grey and<br>brown/yellow silty sandy clay with trace gravel, M>Wp                                  |                | A, PID | 0.7   | E      | PID<1                 |       |                         |  |  |
|          |              | SANDY CLAY - Brown/yellow, fine grained sandy clay,<br>M>Wp                                                                            |                | A, PID | 0.9   | E      | PID<1                 |       |                         |  |  |
|          | - 1          | From 1.0m, grading to extremely low strength, extremely weathered sandstone                                                            |                |        |       |        |                       |       | -1                      |  |  |
|          | • 1.1-       | Bore discontinued at 1.1m , limit of investigation                                                                                     |                |        |       |        |                       |       |                         |  |  |
|          |              |                                                                                                                                        |                |        |       |        |                       |       | -                       |  |  |
|          |              |                                                                                                                                        |                |        |       |        |                       |       | -                       |  |  |
|          | - 2          |                                                                                                                                        |                |        |       |        |                       |       | -2                      |  |  |
|          |              |                                                                                                                                        |                |        |       |        |                       |       |                         |  |  |
|          |              |                                                                                                                                        |                |        |       |        |                       |       |                         |  |  |
|          |              |                                                                                                                                        |                |        |       |        |                       |       |                         |  |  |
|          |              |                                                                                                                                        |                |        |       |        |                       |       |                         |  |  |
|          | -<br>-       |                                                                                                                                        |                |        |       |        |                       |       | -                       |  |  |
|          |              |                                                                                                                                        |                |        |       |        |                       |       |                         |  |  |

**RIG:** Truck mounted (TD104) DRILLER: Total Drilling LOGGED: Sebastian TYPE OF BORING: 100mm diameter solid flight auger with TC bit to 1.1m WATER OBSERVATIONS: No free groundwater observed

REMARKS: Survey co-ordinates and levels provided by Lake Macquarie City Council



Lake Macquarie City Council

**Detailed Site Investigation** 

LOCATION: 31-33 Smith Street, Charlestown

CLIENT:

PROJECT:

SURFACE LEVEL: 107.34 AHD BORE No: 104 EASTING: 378119.8 **NORTHING:** 6351816.3 DIP/AZIMUTH: 90°/--

PROJECT No: 81563.01 DATE: 7/10/2014 SHEET 1 OF 1

|   | 1            |                                                                                                                                                                                       | 1              |             |        |        |                            |       |              |  |
|---|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|--------|--------|----------------------------|-------|--------------|--|
|   | Derth        | Description                                                                                                                                                                           | Graphic<br>Log |             |        |        | & In Situ Testing          | - r   | Well         |  |
| R | Depth<br>(m) | of                                                                                                                                                                                    | Log            | Type        | Depth  | Sample | Results &                  | Water | Construction |  |
|   |              | Strata                                                                                                                                                                                | Ū              | Ā           | Del    | San    | Results & Comments         |       | Details      |  |
| H | 0.03 -       | ~ASPHALT //                                                                                                                                                                           |                |             |        |        |                            |       |              |  |
| - |              | FILLING - Generally comprising light brown and grey,<br>fine to medium grained sand filling with abundant<br>gravel and trace cobbles, moist<br>From 0.2m, colour change to red/brown |                | A, PID      | 0.1    | E      | PID<1                      |       | -            |  |
| - |              |                                                                                                                                                                                       |                | A, PID      | 0.3    | E      | PID<1                      |       | -            |  |
| - | 0.5 -        | FILLING - Generally comprising grey and brown/yellow<br>silty sandy clay with trace slag gravel and ash gravel,<br>slight hydrocarbon odour, M>Wp                                     |                | A, PID      | 0.6    | E      | PID<1                      |       | -            |  |
| - | - 0.8 -      | SANDY CLAY - Hard, brown/yellow mottled red sandy clay, M>Wp                                                                                                                          |                |             | 1.0    |        |                            |       | - 1          |  |
|   | •<br>•       | From 1.1m, grading to extremely low strength, extremely weathered sandstone                                                                                                           |                | SPT,<br>PID | 1.0    | E      | 9,18,25<br>N = 43<br>PID<1 |       |              |  |
| - | 1.45 -       | Bore discontinued at 1.45m , limit of investigation                                                                                                                                   |                |             | -1.45- |        |                            |       | -            |  |
| - | -2           |                                                                                                                                                                                       |                |             |        |        |                            |       | -2           |  |
| - |              |                                                                                                                                                                                       |                |             |        |        |                            |       | -            |  |
| - |              |                                                                                                                                                                                       |                |             |        |        |                            |       |              |  |
| - |              |                                                                                                                                                                                       |                |             |        |        |                            |       | -            |  |

**RIG:** Truck mounted (TD104) DRILLER: Total Drilling LOGGED: Sebastian TYPE OF BORING: 100mm diameter solid flight auger with TC bit to 1.0m

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Survey co-ordinates and levels provided by Lake Macquarie City Council

**SAMPLING & IN SITU TESTING LEGEND**  
 LING & IN SITUTESTING LEGEND

 G
 Gas sample

 PID
 Photo ionisation detector (ppm)

 P
 Piston sample

 U,
 Tube sample (x mm dia.)

 W
 Water sample

 >
 Vater seep

 S
 Standard penetration test

 ¥
 Water level

 V
 Shear vane (kPa)
 A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample Douglas Partners Geotechnics | Environment | Groundwater

Lake Macquarie City Council

PROJECT: Detailed Site Investigation

LOCATION: 31-33 Smith Street, Charlestown

CLIENT:

SURFACE LEVEL: 107.82 AHD BORE No: 105 EASTING: 378136.3 NORTHING: 6351815.6 DIP/AZIMUTH: 90°/--

PROJECT No: 81563.01 **DATE:** 7/10/2014 SHEET 1 OF 1

|    |        |                                                                                                                                                         |                |             |        | -      | In Situ Testing             |       |              |
|----|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|--------|--------|-----------------------------|-------|--------------|
|    | Depth  | Description                                                                                                                                             | Graphic<br>Log |             |        |        | In Situ Testing             | er –  | Well         |
| RL | (m)    | of                                                                                                                                                      | Lo             | Type        | Depth  | Sample | Results & Comments          | Water | Construction |
|    |        | Strata                                                                                                                                                  | 0              | ŕ           | ă      | Saı    | Comments                    |       | Details      |
|    | 0.03 - | - ASPHALT                                                                                                                                               | XX             |             |        |        |                             |       |              |
| -  | _      | FILLING - Generally comprising grey, fine to medium<br>grained gravelly sand filling, with some cobbles, moist<br>From 0.1m, colour change to red/brown |                | A, PID      | 0.3    | Е      | PID=3                       |       | -            |
| -  | 0.55 - |                                                                                                                                                         |                | .,          | 0.0    |        |                             |       | -            |
|    | 0.7    | FILLING - Generally comprising dark grey and<br>brown/yellow silty clay with some slag gravel, trace ash<br>gravel, slight hydrocarbon odour, M>Wp      |                | A, PID      | 0.6    | Е      | PID=2                       |       |              |
| -  | 0.7    | SANDY CLAY - Very stiff, brown and yellow sandy clay, M>Wp                                                                                              |                |             |        |        |                             |       | -            |
| -  | - 1    | From 0.95m, grading to extremely low strength, extremely weathered sandstone                                                                            |                |             | 1.0    |        |                             |       | -1           |
| -  |        |                                                                                                                                                         |                | SPT,<br>PID |        | E      | 19,17,20<br>N = 37<br>PID<1 |       | -            |
|    | 1.45 - | Bore discontinued at 1.45m , limit of investigation                                                                                                     | <u>///</u>     |             | -1.45- |        |                             |       | -            |
|    |        |                                                                                                                                                         |                |             |        |        |                             |       | -            |
|    |        |                                                                                                                                                         |                |             |        |        |                             |       | -            |
|    |        |                                                                                                                                                         |                |             |        |        |                             |       | -            |
|    | -2     |                                                                                                                                                         |                |             |        |        |                             |       | -2           |
|    |        |                                                                                                                                                         |                |             |        |        |                             |       | -            |
|    |        |                                                                                                                                                         |                |             |        |        |                             |       |              |
|    |        |                                                                                                                                                         |                |             |        |        |                             |       |              |
|    |        |                                                                                                                                                         |                |             |        |        |                             |       |              |
|    |        |                                                                                                                                                         |                |             |        |        |                             |       |              |
| -  |        |                                                                                                                                                         |                |             |        |        |                             |       |              |

**RIG:** Truck mounted (TD104) DRILLER: Total Drilling LOGGED: Sebastian TYPE OF BORING: 100mm diameter solid flight auger with TC bit to 1.0m

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Survey co-ordinates and levels provided by Lake Macquarie City Council

|   | SAMF                 | PLIN | G & IN SITU TESTING     | LEO  | GEND                                     | ] |             |          |                        |
|---|----------------------|------|-------------------------|------|------------------------------------------|---|-------------|----------|------------------------|
| A | Auger sample         | G    | Gas sample              | PID  | Photo ionisation detector (ppm)          |   |             |          |                        |
| B | Bulk sample          | Р    | Piston sample           | PL(A | ) Point load axial test Is(50) (MPa)     |   |             |          | <b>Partners</b>        |
| B | LK Block sample      | U,   | Tube sample (x mm dia.) | PL(C | ) Point load diametral test Is(50) (MPa) |   |             |          | s partners             |
| C | Core drilling        | Ŵ    | Water sample            | pp   | Pocket penetrometer (kPa)                |   | <b>D</b> UG | 4103     |                        |
| D | Disturbed sample     | ⊳    | Water seep              | S    | Standard penetration test                |   |             |          |                        |
| E | Environmental sample | Ŧ    | Water level             | V    | Shear vane (kPa)                         |   | Geotechnic  | s   Envi | ironment   Groundwater |
|   |                      |      |                         |      |                                          |   |             |          |                        |

SURFACE LEVEL: 108.98 AHD BORE No: 106 EASTING: 378174.7 **NORTHING:** 6351810.1 DIP/AZIMUTH: 90°/--

PROJECT No: 81563.01 DATE: 7/10/2014 SHEET 1 OF 1

| _ |              |                                                                                                       |                |             |        |          | <b>II.</b> 90 /     |       |              |   |
|---|--------------|-------------------------------------------------------------------------------------------------------|----------------|-------------|--------|----------|---------------------|-------|--------------|---|
|   |              | Description                                                                                           | <u>i</u>       |             | Sam    | pling &  | & In Situ Testing   | Well  |              |   |
| R | Depth<br>(m) | of                                                                                                    | Graphic<br>Log | e           | ÷      | <u>e</u> | Decisity 9          | Water | Construction | n |
|   | (11)         | Strata                                                                                                | ъ<br>С         | Type        | Depth  | Sample   | Results & Comments  | 3     | Details      |   |
| Η | 0.03-        | ASPHALT                                                                                               |                |             | _      | 0        |                     | +     |              |   |
|   |              |                                                                                                       |                |             |        |          |                     |       |              |   |
|   |              | FILLING - Generally comprising grey, fine to medium grained gravelly sand filling, some silt, moist   |                |             |        |          |                     |       |              |   |
|   | -            |                                                                                                       |                | A, PID      | 0.2    | Е        | PID<1               |       | -            |   |
|   |              |                                                                                                       |                |             |        |          |                     |       |              |   |
|   |              | From 0.3m, red/brown                                                                                  |                |             |        |          |                     |       |              |   |
|   | -            |                                                                                                       |                |             |        |          |                     |       | -            |   |
|   |              |                                                                                                       |                |             | 0.5    |          |                     |       |              |   |
|   | -            |                                                                                                       |                | A, PID      | 0.5    | E        | PID<1               |       | -            |   |
|   | - 0.6        | FILLING Concretive comprising dark grav                                                               | $\rightarrow$  |             |        |          |                     |       | -            |   |
|   |              | FILLING - Generally comprising dark grey,<br>brown/yellow silty sandy clay filling, with some gravel, |                |             |        | _        |                     |       |              |   |
|   | -            | M>Wp                                                                                                  |                | A, PID      | 0.7    | E        | PID<1               |       | -            |   |
|   | - 0.8-       |                                                                                                       | $\rightarrow$  |             |        |          |                     |       | -            |   |
|   |              | SANDY CLAY - Hard, generally comprising<br>brown/yellow sandy clay, M>Wp                              |                |             |        |          |                     |       |              |   |
|   | -            |                                                                                                       |                |             |        |          |                     |       | -            |   |
|   | - 1          | From 0.95m, grading to extremely low strength, extremely weathered sandstone                          |                |             | 1.0    |          |                     |       | -1           |   |
|   |              | extremely weathered sandstone                                                                         |                | SPT,<br>PID |        | Е        | 18,25/10<br>refusal |       |              |   |
|   | -            |                                                                                                       |                | PID         |        |          | PID<1               |       | -            |   |
|   | 1.16-        | Bore discontinued at 1.16m, limit of investigation                                                    |                |             | -1.16- |          |                     |       | -            |   |
|   |              |                                                                                                       |                |             |        |          |                     |       |              |   |
|   | -            |                                                                                                       |                |             |        |          |                     |       | -            |   |
|   | -            |                                                                                                       |                |             |        |          |                     |       | -            |   |
|   |              |                                                                                                       |                |             |        |          |                     |       |              |   |
|   | -            |                                                                                                       |                |             |        |          |                     |       | -            |   |
|   | _            |                                                                                                       |                |             |        |          |                     |       | -            |   |
|   |              |                                                                                                       |                |             |        |          |                     |       |              |   |
|   | -            |                                                                                                       |                |             |        |          |                     |       | -            |   |
|   | _            |                                                                                                       |                |             |        |          |                     |       | _            |   |
|   |              |                                                                                                       |                |             |        |          |                     |       |              |   |
|   | -            |                                                                                                       |                |             |        |          |                     |       | -            |   |
|   | _            |                                                                                                       |                |             |        |          |                     |       | -2           |   |
|   | -2           |                                                                                                       |                |             |        |          |                     |       | -2           |   |
|   | -            |                                                                                                       |                |             |        |          |                     |       | -            |   |
|   |              |                                                                                                       |                |             |        |          |                     |       |              |   |
|   | -            |                                                                                                       |                |             |        |          |                     |       |              |   |
|   | -            |                                                                                                       |                |             |        |          |                     |       | -            |   |
|   |              |                                                                                                       |                |             |        |          |                     |       |              |   |
|   | -            |                                                                                                       |                |             |        |          |                     |       | -            |   |
|   | -            |                                                                                                       |                |             |        |          |                     |       | -            |   |
|   |              |                                                                                                       |                |             |        |          |                     |       |              |   |
|   | -            |                                                                                                       |                |             |        |          |                     |       |              |   |
|   | .            |                                                                                                       |                |             |        |          |                     |       |              |   |
|   |              |                                                                                                       |                |             |        |          |                     |       |              |   |
|   | -            |                                                                                                       |                |             |        |          |                     |       |              |   |
|   | .            |                                                                                                       |                |             |        |          |                     |       |              |   |
|   |              |                                                                                                       |                |             |        |          |                     |       |              |   |
|   |              |                                                                                                       |                | I           |        |          |                     |       |              |   |

**RIG:** Truck mounted (TD104) DRILLER: Total Drilling LOGGED: Sebastian TYPE OF BORING: 100mm diameter solid flight auger with TC bit to 1.0m

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed

CLIENT:

PROJECT:

Lake Macquarie City Council **Detailed Site Investigation** 

LOCATION: 31-33 Smith Street, Charlestown

REMARKS: Survey co-ordinates and levels provided by Lake Macquarie City Council

**SAMPLING & IN SITU TESTING LEGEND** A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample 
 LING & IN SITU TESTING LEGEND

 G Gas sample

 P Piston sample

 VTUDE sample (x mm dia.)

 VEL(A) Point load axial test Is(50) (MPa)

 W Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 <t **Douglas Partners** Geotechnics | Environment | Groundwater

Lake Macquarie City Council

PROJECT: Detailed Site Investigation

LOCATION: 31-33 Smith Street, Charlestown

CLIENT:

SURFACE LEVEL: 109.51 AHD BORE No: 107 **EASTING:** 378193 NORTHING: 6351806.6 DIP/AZIMUTH: 90°/--

PROJECT No: 81563.01 **DATE:** 7/10/2014 SHEET 1 OF 1

| _  |              |                                                                                                     |                |             | /72    |        |                          |       |                         |
|----|--------------|-----------------------------------------------------------------------------------------------------|----------------|-------------|--------|--------|--------------------------|-------|-------------------------|
|    |              | Description                                                                                         | jc             |             | Sam    |        | & In Situ Testing        |       | Well                    |
| RL | Depth<br>(m) | of<br>Strata                                                                                        | Graphic<br>Log | Type        | Depth  | Sample | Results &<br>Comments    | Water | Construction<br>Details |
| H  | 0.03-        | ASPHALT                                                                                             |                |             |        | ů      |                          |       |                         |
|    | 0.03 -       | FILLING - Generally comprising grey, fine to medium grained gravelly sand filling, some silt, moist |                | A, PID      | 0.2    | E      | PID<1                    |       | -                       |
|    |              | From 0.3m, grey and red                                                                             |                | A, PID      | 0.5    | E      | PID<1                    |       | -                       |
|    | 0.6 -        | SANDY CLAY - Stiff, brown/yellow sandy clay, M>Wp                                                   |                | A, PID      | 0.8    | E      | PID<1                    |       |                         |
|    | - 1          |                                                                                                     |                |             | 1.0    |        |                          |       | -1                      |
|    |              | From 1.1m, grading to extremely low strength, extremely weathered sandstone                         |                | SPT,<br>PID |        | E      | 4.5.7<br>N = 12<br>PID<1 |       | -                       |
|    | 1.45 -       | Bore discontinued at 1.45m , limit of investigation                                                 |                |             | -1.45- |        |                          |       | -                       |
|    | -2           |                                                                                                     |                |             |        |        |                          |       | -2                      |
|    |              |                                                                                                     |                |             |        |        |                          |       |                         |
|    |              |                                                                                                     |                |             |        |        |                          |       | -                       |

**RIG:** Truck mounted (TD104) DRILLER: Total Drilling LOGGED: Sebastian TYPE OF BORING: 100mm diameter solid flight auger with TC bit to 1.0m

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Survey co-ordinates and levels provided by Lake Macquarie City Council

| SAM                  | PLIN | G & IN SITU TESTING     | G LE | GEND                                     |             |       |                      |
|----------------------|------|-------------------------|------|------------------------------------------|-------------|-------|----------------------|
| Auger sample         | G    | Gas sample              | PID  | Photo ionisation detector (ppm)          |             |       |                      |
| Bulk sample          | Р    | Piston sample           | PL(A | ) Point load axial test Is(50) (MPa)     |             |       | <b>Partners</b>      |
| LK Block sample      | U,   | Tube sample (x mm dia.) | PL(C | ) Point load diametral test Is(50) (MPa) |             | 126   | Darthers             |
| Core drilling        | Ŵ    | Water sample            | pp   | Pocket penetrometer (kPa)                | DUGY        | 143   | rai uici j           |
| Disturbed sample     | ⊳    | Water seep              | S    | Standard penetration test                |             |       |                      |
| Environmental sample | Ŧ    | Water level             | V    | Shear vane (kPa)                         | Geotechnics | Envir | onment   Groundwater |
|                      |      |                         |      | ,                                        |             |       |                      |

Lake Macquarie City Council

PROJECT: Detailed Site Investigation

LOCATION: 31-33 Smith Street, Charlestown

CLIENT:

SURFACE LEVEL: 106.23 AHD BORE No: 108 EASTING: 378116.4 **NORTHING:** 6351798.2 DIP/AZIMUTH: 90°/--

PROJECT No: 81563.01 **DATE:** 7/10/2014 SHEET 1 OF 1

| $\square$ |              | Description                                                                                                         | U              |        | Sam   | pling & | In Situ Testing    |       | Well                    |
|-----------|--------------|---------------------------------------------------------------------------------------------------------------------|----------------|--------|-------|---------|--------------------|-------|-------------------------|
| RL        | Depth<br>(m) | of<br>Strata                                                                                                        | Graphic<br>Log | Type   | Depth | Sample  | Results & Comments | Water | Construction<br>Details |
|           |              | FILLING - Generally comprising brown silty, fine to<br>medium grained gravelly sand filling, some cobbles,<br>moist |                | A, PID |       | Ĕ       | PID<1              |       |                         |
| -         | 0.3 -        | SANDY CLAY - (Stiff) brown and yellow sandy clay,<br>M>Wp                                                           |                | A, PID | 0.5   | E       | PID<1              | -     |                         |
| -         |              | From 0.8m, brown, yelllow, orange and red mottled                                                                   |                |        |       |         |                    | -     |                         |
| -         | - 1          | From 1.0m, grading to extremely low strength, extremely weathered sandstone                                         |                | A, PID | 1.0   | E       | PID<1              | -     | -1                      |
|           | 1.5 -        |                                                                                                                     |                | A, PID | 1.4   | E       | PID<1              |       |                         |
| -         |              | Bore discontinued at 1.5m , limit of investigation                                                                  |                |        |       |         |                    | -     |                         |
| -         |              |                                                                                                                     |                |        |       |         |                    | -     |                         |
| -         | -2           |                                                                                                                     |                |        |       |         |                    | -     | 2                       |
|           |              |                                                                                                                     |                |        |       |         |                    | -     |                         |
|           |              |                                                                                                                     |                |        |       |         |                    |       |                         |
|           |              |                                                                                                                     |                |        |       |         |                    |       |                         |
| -         |              |                                                                                                                     |                |        |       |         |                    | -     |                         |

**RIG:** Truck mounted (TD104) DRILLER: Total Drilling LOGGED: Sebastian TYPE OF BORING: 100mm diameter solid flight auger with TC bit to 1.5m

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Survey co-ordinates and levels provided by Lake Macquarie City Council

|    | SAM                  | PLIN | G & IN SITU TESTING     | LEC  | GEND                                     |       |              |      |                       |
|----|----------------------|------|-------------------------|------|------------------------------------------|-------|--------------|------|-----------------------|
| A  | Auger sample         | G    | Gas sample              | PID  | Photo ionisation detector (ppm)          |       |              |      |                       |
| в  | Bulk sample          | Р    | Piston sample           | PL(A | ) Point load axial test Is(50) (MPa)     |       |              | _    |                       |
| BL | K Block sample       | U,   | Tube sample (x mm dia.) | PL(C | ) Point load diametral test Is(50) (MPa) |       |              | 126  | <b>Partners</b>       |
| C  | Core drilling        | Ŵ    | Water sample            | pp   | Pocket penetrometer (kPa)                |       | DUGG         | 103  | гаі шсі э             |
| D  | Disturbed sample     | ⊳    | Water seep              | S    | Standard penetration test                |       |              |      |                       |
| E  | Environmental sample | Ŧ    | Water level             | V    | Shear vane (kPa)                         |       | Geotechnics  | Envi | ronment   Groundwater |
|    |                      |      |                         |      | ,                                        | <br>_ | 000100111100 |      |                       |

SURFACE LEVEL: 108.39 AHD BORE No: 109 EASTING: 378168.1 NORTHING: 6351792.9 DIP/AZIMUTH: 90°/--

**PROJECT No:** 81563.01 **DATE:** 7/10/2014 SHEET 1 OF 1

| Γ  | Description         |                                                                                                                                                    |                |        | Sam   | pling 8 | k In Situ Testing  |       | Well         |
|----|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|-------|---------|--------------------|-------|--------------|
| RL | Depth               | of                                                                                                                                                 | Graphic<br>Log | e      |       |         |                    | Water | Construction |
|    | (m)                 | Strata                                                                                                                                             | ъ<br>В<br>П    | Type   | Depth | Sample  | Results & Comments | 3     | Details      |
|    | 0.01-               |                                                                                                                                                    | $\times$       |        |       | 0,      |                    |       |              |
|    | -                   | FILLING - Generally comprising brown silty, fine to<br>medium grained sand filling, with trace gravel, timber<br>and trace organics to 0.2m, moist |                | A, PID | 0.1   | E       | PID<1              |       | -            |
|    | -                   | From 0.4m, some clay                                                                                                                               |                | A, PID | 0.5   | E       | PID<1              |       |              |
|    | - 0.9 -<br>- 1<br>- | SANDY CLAY - (Stiff) brown and yellow sandy clay,<br>M>Wp                                                                                          |                | A, PID | 1.0   | E       | PID<1              |       | -1           |
|    | -<br>- 1.5 -        | From 1.3m, grading to extremely low strength, extremely weathered sandstone                                                                        |                | A, PID | 1.4   | E       | PID<1              |       | -            |
|    | - 1.5               | Bore discontinued at 1.5m , limit of investigation                                                                                                 |                |        |       |         |                    |       |              |
|    | - 2                 |                                                                                                                                                    |                |        |       |         |                    |       |              |

**RIG:** Truck mounted (TD104) DRILLER: Total Drilling LOGGED: Sebastian TYPE OF BORING: 100mm diameter solid flight auger with TC bit to 1.5m

WATER OBSERVATIONS: No free groundwater observed

CLIENT:

Lake Macquarie City Council

PROJECT: Detailed Site Investigation

LOCATION: 31-33 Smith Street, Charlestown

REMARKS: Survey co-ordinates and levels provided by Lake Macquarie City Council

|     | SAMP                 | LIN | G & IN SITU TESTING     | LEC  | GEND                                     |   |                 |       |                      |
|-----|----------------------|-----|-------------------------|------|------------------------------------------|---|-----------------|-------|----------------------|
| A   | Auger sample         | G   | Gas sample              | PID  | Photo ionisation detector (ppm)          |   |                 |       |                      |
| В   | Bulk sample          | Р   | Piston sample           | PL(A | ) Point load axial test Is(50) (MPa)     |   |                 | _     |                      |
| BLK | Block sample         | U,  | Tube sample (x mm dia.) | PL(D | ) Point load diametral test Is(50) (MPa) |   |                 | 126   | Partners             |
| С   | Core drilling        | Ŵ   | Water sample            | pp`  | Pocket penetrometer (kPa)                |   | DUUY            | 103   | rai liici J          |
| D   | Disturbed sample     | ⊳   | Water seep              | S    | Standard penetration test                |   | _               |       |                      |
| E   | Environmental sample | Ŧ   | Water level             | V    | Shear vane (kPa)                         |   | Geotechnics     | Envir | onment   Groundwater |
|     |                      |     |                         |      | · · · · · · · · · · · · · · · · · · ·    | _ | 000000000000000 |       | Siment - Stoundhator |

SURFACE LEVEL: 108.34 AHD BORE No: 110 EASTING: 378189.9 **NORTHING:** 6351787.4 DIP/AZIMUTH: 90°/--

**PROJECT No:** 81563.01 **DATE:** 7/10/2014 SHEET 1 OF 1

|   | Denth        | Description                                                                                                                 | Sampling & In Situ Testing |        |       |        |                    |       | Well         |
|---|--------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------|--------|-------|--------|--------------------|-------|--------------|
| R | Depth<br>(m) | of                                                                                                                          | Graphic<br>Log             | Type   | Depth | Sample | Results & Comments | Water | Construction |
|   |              | Strata                                                                                                                      | Ū                          | Ţ      | Del   | San    | Comments           |       | Details      |
| H | 0.01-        | VEGETATION                                                                                                                  |                            |        |       |        |                    |       |              |
| - |              | FILLING - Generally comprising brown silty, fine to<br>medium grained sand filling, with some gravel and<br>organics, moist |                            | A, PID | 0.2   | E      | PID<1              |       | -            |
| - | 0.4 -        | SANDY CLAY - (Stiff) brown and yellow sandy clay,<br>M>Wp                                                                   |                            | A, PID | 0.5   | E      | PID<1              |       | -            |
| - | -1           |                                                                                                                             |                            | A, PID | 1.0   | E      | PID<1              |       | - 1          |
| - |              | From 1.2m, grading to red and light grey and orange,<br>extremely low strength, extremely weathered<br>sandstone            |                            | A, PID | 1.4   | E      | PID<1              |       | -            |
|   | 1.5 -        | Bore discontinued at 1.5m , limit of investigation                                                                          | <u> </u>                   |        |       |        |                    |       |              |
|   | -2           |                                                                                                                             |                            |        |       |        |                    |       | -2           |

**RIG:** Truck mounted (TD104) DRILLER: Total Drilling LOGGED: Sebastian TYPE OF BORING: 100mm diameter solid flight auger with TC bit to 1.5m

WATER OBSERVATIONS: No free groundwater observed

CLIENT:

Lake Macquarie City Council

PROJECT: Detailed Site Investigation

LOCATION: 31-33 Smith Street, Charlestown

REMARKS: Survey co-ordinates and levels provided by Lake Macquarie City Council

|    | SAME                 | PLIN             | G & IN SITU TESTING     | E LEC | GEND                                     |       |              |       |                      |
|----|----------------------|------------------|-------------------------|-------|------------------------------------------|-------|--------------|-------|----------------------|
| Α  | Auger sample         | G                | Gas sample              | PID   | Photo ionisation detector (ppm)          |       |              |       |                      |
| в  | Bulk sample          | Р                | Piston sample           | PL(A  | ) Point load axial test Is(50) (MPa)     |       |              | _     |                      |
| BL | K Block sample       | U,               | Tube sample (x mm dia.) | PL(D  | ) Point load diametral test Is(50) (MPa) |       |              | 126   | Partners             |
| С  | Core drilling        | Ŵ                | Water sample            | pp`   | Pocket penetrometer (kPa)                |       | DUUY         | 123   |                      |
| D  | Disturbed sample     | $\triangleright$ | Water seep              | S     | Standard penetration test                |       |              |       |                      |
| E  | Environmental sample | Ā                | Water level             | V     | Shear vane (kPa)                         |       | Geotechnics  | Envir | onment   Groundwater |
|    |                      |                  |                         |       |                                          | <br>_ | 000100111100 |       |                      |

CLIENT:

PROJECT:

Lake Macquarie City Council **Detailed Site Investigation** 

LOCATION: 31-33 Smith Street, Charlestown

SURFACE LEVEL: 106.99 AHD BORE No: 111 **EASTING:** 378134.3 **NORTHING:** 6351789.5 DIP/AZIMUTH: 90°/--

PROJECT No: 81563.01 DATE: 7/10/2014 SHEET 1 OF 1

|   |       |                                                                                              |                     |        | <i></i> |         | <b>H:</b> 90 <sup>-7</sup> |       | SHEET TOFT   |
|---|-------|----------------------------------------------------------------------------------------------|---------------------|--------|---------|---------|----------------------------|-------|--------------|
|   |       | Description                                                                                  | ы                   |        | Sam     | pling & | & In Situ Testing          |       | Well         |
| R | Depth | of                                                                                           | Graphic<br>Log      | đ      |         |         |                            | Water | Construction |
|   | (m)   | Strata                                                                                       | Gra                 | Type   | Depth   | Sample  | Results &<br>Comments      | ≥     | Details      |
| Н | 0.03  |                                                                                              |                     | -      |         | S       |                            |       |              |
|   | 0.00  |                                                                                              | $\bigotimes$        |        |         |         |                            |       |              |
|   |       | FILLING - Generally comprising silty, fine to medium<br>grained gravelly sand filling, moist | $\bigotimes$        |        |         |         |                            |       |              |
|   | -     |                                                                                              | $\bowtie$           | A, PID | 0.2     | Е       | PID<1                      |       | -            |
|   | - 0.3 |                                                                                              | $\bigotimes$        |        |         |         |                            |       |              |
|   | - 0.3 | SANDY CLAY - (Stiff) brown and yellow mottled red                                            | $\langle / \rangle$ |        |         |         |                            |       |              |
|   | -     | sandy clay, M>Wp                                                                             |                     |        |         |         |                            |       | -            |
|   |       |                                                                                              |                     | A, PID | 0.5     | -       |                            |       |              |
|   | -     |                                                                                              |                     | A, PID | 0.5     | E       | PID<1                      |       |              |
|   | -     |                                                                                              |                     |        |         |         |                            |       | -            |
|   |       |                                                                                              |                     |        |         |         |                            |       |              |
|   |       |                                                                                              | $\langle / \rangle$ |        |         |         |                            |       |              |
|   | -     | From 0.8m, grading to extremely low strength                                                 | $\langle / \rangle$ |        |         |         |                            |       | -            |
|   |       | From 0.8m, grading to extremely low strength, extremely weathered sandstone                  | $\langle / \rangle$ |        |         |         |                            |       |              |
|   | -     |                                                                                              | $\langle / \rangle$ |        |         |         |                            |       |              |
|   | -1    |                                                                                              |                     | A, PID | 1.0     | Е       | PID<1                      |       | -1           |
|   |       |                                                                                              |                     |        |         |         |                            |       |              |
|   | -     |                                                                                              | $\backslash$        |        |         |         |                            |       |              |
|   | - 1.2 | Bore discontinued at 1.2m , limit of investigation                                           |                     |        |         |         |                            | -     |              |
|   |       | Bore discontinued at 1.211, inflit of investigation                                          |                     |        |         |         |                            |       |              |
|   | -     |                                                                                              |                     |        |         |         |                            |       |              |
|   | -     |                                                                                              |                     |        |         |         |                            |       | -            |
|   |       |                                                                                              |                     |        |         |         |                            |       |              |
|   | -     |                                                                                              |                     |        |         |         |                            |       |              |
|   | -     |                                                                                              |                     |        |         |         |                            |       |              |
|   |       |                                                                                              |                     |        |         |         |                            |       |              |
|   |       |                                                                                              |                     |        |         |         |                            |       |              |
|   | -     |                                                                                              |                     |        |         |         |                            |       | -            |
|   |       |                                                                                              |                     |        |         |         |                            |       |              |
|   |       |                                                                                              |                     |        |         |         |                            |       |              |
|   | -2    |                                                                                              |                     |        |         |         |                            |       | - 2          |
|   |       |                                                                                              |                     |        |         |         |                            |       |              |
|   |       |                                                                                              |                     |        |         |         |                            |       |              |
|   | -     |                                                                                              |                     |        |         |         |                            |       | -            |
|   |       |                                                                                              |                     |        |         |         |                            |       |              |
|   |       |                                                                                              |                     |        |         |         |                            |       |              |
|   | -     |                                                                                              |                     |        |         |         |                            |       | -            |
|   |       |                                                                                              |                     |        |         |         |                            |       |              |
|   |       |                                                                                              |                     |        |         |         |                            |       |              |
|   | -     |                                                                                              |                     |        |         |         |                            |       | -            |
|   |       |                                                                                              |                     |        |         |         |                            |       |              |
|   | -     |                                                                                              |                     |        |         |         |                            |       |              |
|   | -     |                                                                                              |                     |        |         |         |                            |       | -            |
|   |       |                                                                                              |                     |        |         |         |                            |       |              |
|   | -     |                                                                                              |                     |        |         |         |                            |       |              |
|   |       |                                                                                              |                     |        |         |         |                            |       |              |

**RIG:** Truck mounted (TD104) DRILLER: Total Drilling LOGGED: Sebastian TYPE OF BORING: 100mm diameter solid flight auger with TC bit to 1.2m WATER OBSERVATIONS: No free groundwater observed

REMARKS: Survey co-ordinates and levels provided by Lake Macquarie City Council

**SAMPLING & IN SITU TESTING LEGEND** A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample 
 LING & IN SITU TESTING LEGEND

 G Gas sample

 P Piston sample

 VTUDE sample (x mm dia.)

 VEL(A) Point load axial test Is(50) (MPa)

 W Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 VEV Water sample (x mm dia.)

 <t **Douglas Partners** Geotechnics | Environment | Groundwater

Lake Macquarie City Council

PROJECT: Detailed Site Investigation

LOCATION: 31-33 Smith Street, Charlestown

CLIENT:

SURFACE LEVEL: 107.75 AHD BORE No: 112 EASTING: 378175.6 NORTHING: 6351775.6 DIP/AZIMUTH: 90°/--

PROJECT No: 81563.01 **DATE:** 7/10/2014 SHEET 1 OF 1

| E     Description<br>(m)     Sampling & In Sim Testing<br>(m)     Well<br>Based<br>(m)       000<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |              | 1                                                                                                                          |     |        |     |     | <b>II.</b> 30 /   |      |              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------|----------------------------------------------------------------------------------------------------------------------------|-----|--------|-----|-----|-------------------|------|--------------|
| Other     Other     Other     Other       0.1     FILLING - Generally comprising brown, fine to medium<br>grained sand filling, trace gravel, moist     A, PID     0.2     E     PID<1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |              | Description                                                                                                                | ji  |        | Sam |     | & In Situ Testing |      | Well         |
| Otom     VEGETATION       0.1     FILLING - Generally comprising brown, fine to medium grained sand filling, trace gravel, moist       0.1     FILLING - Generally comprising brown and yellow, silty sandy clay filling, with trace brick and tile fragments, M-Wp       0.7     FILLING - Generally comprising dark brown, fine to medium grained sandy silt, moist       1     A, PID       0.7     FILLING - Generally comprising dark brown, fine to medium grained sandy silt, moist       1     A, PID       1.1     SANDY CLAY - (Stiff) brown and grey sandy clay with some sand, M-Wp       From 1.3m, brown and yellow     A, PID       1.5     Bore discontinued at 1.5m , limit of investigation | R | Depth<br>(m) | of                                                                                                                         | Log | e      | oth | ple | Results &         | Vate | Construction |
| 0.33       VEGETATION         0.1       FILLING - Generally comprising brown and yellow, silly sandy clay filling, with trace brick and tile fragments.         N-Wp       A, PiD       0.2       E       PID<1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | ()           | Strata                                                                                                                     | õ   | Typ    | Dep | Sam | Comments          | >    | Details      |
| 0.1       FILLING - Generally comprising brown, fine to medium grained sand filling, trace gravel, noist       A, PID       0.2       E       PID<1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H | 0.03         | VEGETATION                                                                                                                 |     |        |     | 0,  |                   |      |              |
| sandy clay filling, with trace brick and tile fragments,         M-Wp         A, PID       0.5         FILLING - Generally comprising dark brown, fine to medium grained sandy silt, moist         A, PID       1.0         FILLING - Generally comprising dark brown, fine to medium grained sandy silt, moist         A, PID       1.0         FILLING - Generally comprising dark brown, fine to medium grained sandy silt, moist         A, PID       1.0         From 1.3m, brown and grey sandy clay with some sand, M-Wp         From 1.3m, brown and yellow         A, PID       1.4         E       PID<1                                                                                            |   |              | FILLING - Generally comprising brown, fine to medium / grained sand filling, trace gravel, moist                           |     |        |     |     |                   |      | -            |
| 0.7       FILLING - Generally comprising dark brown, fine to medium grained sandy silt, moist       A, PID       1.0       E       PID<1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | -            | FILLING - Generally comprising brown and yellow, silty<br>sandy clay filling, with trace brick and tile fragments,<br>M>Wp |     | A, PID | 0.2 | E   | PID<1             |      | -            |
| FILLING - Generally comprising dark brown, fine to<br>medium grained sandy silt, moist<br>-1<br>-1<br>-1.<br>SANDY CLAY - (Stiff) brown and grey sandy clay with<br>some sand, M>Wp<br>From 1.3m, brown and yellow<br>A, PID 1.4 E PID<1<br>-1.5<br>Bore discontinued at 1.5m , limit of investigation                                                                                                                                                                                                                                                                                                                                                                                                        |   | - 07         |                                                                                                                            |     | A, PID | 0.5 | E   | PID<1             |      |              |
| 1.1     SANDY CLAY - (Stiff) brown and grey sandy clay with some sand, M>Wp       From 1.3m, brown and yellow       1.5       Bore discontinued at 1.5m , limit of investigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | -            | FILLING - Generally comprising dark brown, fine to<br>medium grained sandy silt, moist                                     |     |        |     |     |                   |      | -            |
| SANDY CLAY - (Stiff) brown and grey sandy clay with<br>some sand, M>Wp<br>From 1.3m, brown and yellow<br>1.5<br>Bore discontinued at 1.5m , limit of investigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |              |                                                                                                                            |     | A, PID | 1.0 | E   | PID<1             |      | - 1          |
| A, PID 1.4 E PID<1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | -            | SANDY CLAY - (Stiff) brown and grey sandy clay with<br>some sand, M>Wp                                                     |     |        |     |     |                   |      | -            |
| Bore discontinued at 1.5m , limit of investigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | -            |                                                                                                                            |     | A, PID | 1.4 | E   | PID<1             |      | -            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | - 1.5        | Bore discontinued at 1.5m , limit of investigation                                                                         |     |        |     |     |                   |      | -            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | -            |                                                                                                                            |     |        |     |     |                   |      | -            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | -            |                                                                                                                            |     |        |     |     |                   |      | -            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | -2           |                                                                                                                            |     |        |     |     |                   |      | -2           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | -            |                                                                                                                            |     |        |     |     |                   |      | -            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | -            |                                                                                                                            |     |        |     |     |                   |      | -            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | -            |                                                                                                                            |     |        |     |     |                   |      | -            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | -            |                                                                                                                            |     |        |     |     |                   |      |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | -            |                                                                                                                            |     |        |     |     |                   |      |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | -            |                                                                                                                            |     |        |     |     |                   |      |              |

**RIG:** Truck mounted (TD104) DRILLER: Total Drilling LOGGED: Sebastian TYPE OF BORING: 100mm diameter solid flight auger with TC bit to 1.5m

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Survey co-ordinates and levels provided by Lake Macquarie City Council

|    | SAM                  | PLIN | G & IN SITU TESTING     | G LEO | GEND                                     |       |     |                                         |
|----|----------------------|------|-------------------------|-------|------------------------------------------|-------|-----|-----------------------------------------|
| Α  | Auger sample         | G    | Gas sample              | PID   | Photo ionisation detector (ppm)          |       |     |                                         |
| В  | Bulk sample          | Р    | Piston sample           | PL(A  | ) Point load axial test Is(50) (MPa)     | 1     |     | Douglas Partners                        |
| BL | K Block sample       | U,   | Tube sample (x mm dia.) | PL(C  | ) Point load diametral test Is(50) (MPa) |       | 1.7 | Indialas Partners                       |
| С  | Core drilling        | Ŵ    | Water sample            | pp    | Pocket penetrometer (kPa)                |       |     | Dugias rai licis                        |
| D  | Disturbed sample     | ⊳    | Water seep              | S     | Standard penetration test                |       | 11  |                                         |
| E  | Environmental sample | Ŧ    | Water level             | V     | Shear vane (kPa)                         | 100 C |     | Geotechnics   Environment   Groundwater |
|    |                      |      |                         |       |                                          |       | _   |                                         |

Lake Macquarie City Council SURFACE LEVEL: --Additional Investigation EASTING: LOCATION: 31 to 33 Smith Street, Charlestown NORTHING: **DIP/AZIMUTH:** 90°/-- **BORE No: 201** PROJECT No: 81563.02 DATE: 20/8/2016 SHEET 1 OF 1

|                |                                                                                                                |                                  |      |       |        | n. 90/                |       |                         |
|----------------|----------------------------------------------------------------------------------------------------------------|----------------------------------|------|-------|--------|-----------------------|-------|-------------------------|
|                | Description                                                                                                    | . <u>2</u>                       |      | Sam   |        | & In Situ Testing     | 5     | Well                    |
| 교 Depth<br>(m) | of<br>Strata                                                                                                   | Graphic<br>Log                   | Type | Depth | Sample | Results &<br>Comments | Water | Construction<br>Details |
| 0.03           |                                                                                                                | $\times\!\!\!\times\!\!\!\times$ |      |       |        |                       |       |                         |
| -              | FILLING - Generally comprising grey, fine to medium<br>grained gravelly sand filling with trace cobbles, moist |                                  | D    | 0.2   | E      | PID <1                |       | -                       |
| - 0.4          | FILLING - Generally comprising, dark grey and brown-red, fine to medium grained gravelly sand filling, moist   |                                  | A    | 0.5   | E      | PID <1                |       |                         |
| - 0.7          | SANDY CLAY - (Very stiff), brown and yellow sandy clay,<br>M>Wp                                                |                                  | А    | 1.0   | E      | PID <1                |       | - 1                     |
| -              |                                                                                                                |                                  |      |       |        |                       |       | -                       |
|                | Bore discontinued at 1.2m , limit of investigation                                                             |                                  |      |       |        |                       |       |                         |

DRILLER: (FICO) Dudley **RIG:** Truck Mounted (FG101) TYPE OF BORING: 120mm solid flight auger with TC-Bit WATER OBSERVATIONS: No free groundwater observed **REMARKS:** 

CLIENT:

PROJECT:

LOGGED: Sebastian

CASING: Uncased

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level G P U, W ₽



Lake Macquarie City Council SURFACE LEVEL: --EASTING: LOCATION: 31 to 33 Smith Street, Charlestown NORTHING: **DIP/AZIMUTH:** 90°/-- **BORE No: 202** PROJECT No: 81563.02 DATE: 20/8/2016 SHEET 1 OF 1

| Dant                   | Description                                                                                                  |                |      | Sampling & In Situ Testing |        |                    |       | Well                    |
|------------------------|--------------------------------------------------------------------------------------------------------------|----------------|------|----------------------------|--------|--------------------|-------|-------------------------|
| 균 Depth<br>(m)         | of<br>Strata                                                                                                 | Graphic<br>Log | Type | Depth                      | Sample | Results & Comments | Water | Construction<br>Details |
| 0.03                   | - ASPHALT                                                                                                    |                |      |                            |        |                    |       |                         |
| -                      | FILLING - Generally comprising grey, fine to medium grained gravelly sand filling with trace cobbles, moist  |                | A    | 0.2                        | E      | PID <1             |       | -                       |
| - 0.4                  | FILLING - Generally comprising, dark grey and brown-red, fine to medium grained gravelly sand filling, moist |                | A    | 0.5                        | E      | PID <1             |       | -                       |
| - 0.7<br>-<br>- 1<br>- | SANDY CLAY - (Very stiff), brown and yellow sandy clay,<br>M>Wp                                              |                | А    | 1.0                        | E      | PID <1             |       | -1                      |
| - 1.2                  |                                                                                                              | 1.             |      |                            |        |                    |       |                         |
| -2                     | Bore discontinued at 1.2m , limit of investigation                                                           |                |      |                            |        |                    |       |                         |

DRILLER: (FICO) Dudley **RIG:** Truck Mounted (FG101) TYPE OF BORING: 120mm solid flight auger with TC-Bit WATER OBSERVATIONS: No free groundwater observed **REMARKS:** 

CLIENT:

PROJECT:

Additional Investigation

LOGGED: Sebastian

CASING: Uncased

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level G P U, W ₽



CLIENT:Lake Macquarie City CouncilPROJECT:Additional InvestigationLOCATION:31 to 33 Smith Street, Charlestown

SURFACE LEVEL: --EASTING: NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 203 PROJECT No: 81563.02 DATE: 20/8/2016 SHEET 1 OF 1

|          |       |                                                                                                                                                               |                                       |      | Sam   | nling  | & In Situ Testing     |       |                         |
|----------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------|-------|--------|-----------------------|-------|-------------------------|
|          | Depth | Description                                                                                                                                                   | phic                                  |      |       |        |                       | ter   | Well                    |
| Я        | (m)   | of<br>Strata                                                                                                                                                  | Graphic<br>Log                        | Type | Depth | Sample | Results &<br>Comments | Water | Construction<br>Details |
| $\vdash$ | 0.03  | ASPHALT /                                                                                                                                                     |                                       |      |       | ő      |                       | _     | Details                 |
| -        | 0.03  | FILLING - Generally comprising grey fine to medium grained gravelly sand filling with trace cobbles, moist                                                    |                                       | A    | 0.2   | E      | PID <1                |       | -                       |
|          |       | From 0.3m, brown-red and grey                                                                                                                                 |                                       |      |       |        |                       |       | -                       |
| -        | 0.4 - | FILLING - Generally comprising grey and brown silty<br>sandy clay filling with trace ash, slag and roots, moderate<br>to strong organic citrus odour,<br>M>Wp |                                       | A    | 0.5   | E      | PID = 1               |       | -                       |
| -        | 0.7 - | SANDY CLAY - (Very stiff), brown and yellow sandy clay,<br>M>Wp                                                                                               |                                       |      |       |        |                       |       | -                       |
|          | 1     | From 1.1m, grading to sandstone                                                                                                                               | · · · · · · · · · · · · · · · · · · · | A    | 1.0   | E      | PID = 6               |       | -1                      |
|          | 1.2   | Bore discontinued at 1.2m , limit of investigation                                                                                                            | ĺ <u>⁄. ⁄.</u>                        |      |       |        |                       |       |                         |
|          | 2     |                                                                                                                                                               |                                       |      |       |        |                       |       |                         |

 RIG: Truck Mounted (FG101)
 DRILLER: (FICO) Dudley

 TYPE OF BORING:
 120mm solid flight auger with TC-Bit

 WATER OBSERVATIONS:
 No free groundwater observed

 REMARKS:

LOGGED: Sebastian

CASING: Uncased

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water level
 V
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)



| CLIENT:   | Lake Macquarie City Council        | SURFACE LEVEL:    |
|-----------|------------------------------------|-------------------|
| PROJECT:  | Additional Investigation           | EASTING:          |
| LOCATION: | 31 to 33 Smith Street, Charlestown | NORTHING:         |
|           |                                    | DIP/AZIMUTH: 90°/ |

BORE No: 204 PROJECT No: 81563.02 DATE: 20/8/2016 SHEET 1 OF 1

| Γ |              | Description                                                                                                   | .U             |      | Sam   | npling a | & In Situ Testing     |       | Well         |
|---|--------------|---------------------------------------------------------------------------------------------------------------|----------------|------|-------|----------|-----------------------|-------|--------------|
| R | Depth<br>(m) | of                                                                                                            | Graphic<br>Log | Type | Depth | Sample   | Results &<br>Comments | Water | Construction |
|   |              | Strata                                                                                                        | G              | Тy   | De    | San      | Comments              |       | Details      |
|   | 0.03         |                                                                                                               |                |      |       | _        |                       |       |              |
|   | -            | FILLING - Generally comprising grey fine to medium<br>grained gravelly sand filling with trace cobbles, moist |                | A    | 0.1   | E        | PID = 2               |       |              |
|   | 0.2          | FILLING - Generally comprising, brown-red and grey, fine                                                      | $\bigotimes$   |      |       |          |                       |       | -            |
|   | -            | to meidum grained gravelly sand filling, moist<br>From approximately 0.25m to 0.35m, abundant asphalt,        |                | А    | 0.3   | Е        | PID = 1               |       | -            |
|   |              | coal                                                                                                          |                |      |       |          |                       |       | -            |
|   | 0.5          |                                                                                                               |                |      |       |          |                       |       |              |
|   | - 0.5        | SANDY CLAY - (Very stiff), brown and yellow sandy clay,<br>M>Wp                                               |                |      |       |          |                       |       |              |
|   | -            |                                                                                                               |                |      |       |          |                       |       | -            |
|   |              |                                                                                                               |                | А    | 0.7   | Е        | PID <1                |       | -            |
|   |              |                                                                                                               |                |      |       |          |                       |       | -            |
|   |              |                                                                                                               | ·/·/·          |      |       |          |                       |       | -            |
|   |              |                                                                                                               |                |      |       |          |                       |       |              |
|   | -1 1.0       | Bore discontinued at 1.0m , limit of investigation                                                            |                |      |       |          |                       |       |              |
|   | -            |                                                                                                               |                |      |       |          |                       |       | -            |
|   |              |                                                                                                               |                |      |       |          |                       |       | -            |
|   |              |                                                                                                               |                |      |       |          |                       |       | -            |
|   | _            |                                                                                                               |                |      |       |          |                       |       |              |
|   |              |                                                                                                               |                |      |       |          |                       |       |              |
|   |              |                                                                                                               |                |      |       |          |                       |       | -            |
|   | -            |                                                                                                               |                |      |       |          |                       |       | -            |
|   | -            |                                                                                                               |                |      |       |          |                       |       | -            |
|   |              |                                                                                                               |                |      |       |          |                       |       | -            |
|   |              |                                                                                                               |                |      |       |          |                       |       |              |
|   |              |                                                                                                               |                |      |       |          |                       |       |              |
|   | -2           |                                                                                                               |                |      |       |          |                       |       | -2           |
|   | -            |                                                                                                               |                |      |       |          |                       |       | -            |
|   |              |                                                                                                               |                |      |       |          |                       |       | -            |
|   |              |                                                                                                               |                |      |       |          |                       |       |              |
|   |              |                                                                                                               |                |      |       |          |                       |       |              |
|   | -            |                                                                                                               |                |      |       |          |                       |       | -            |
|   | -            |                                                                                                               |                |      |       |          |                       |       | -            |
|   | .            |                                                                                                               |                |      |       |          |                       |       |              |
|   | _            |                                                                                                               |                |      |       |          |                       |       |              |
|   |              |                                                                                                               |                |      |       |          |                       |       |              |
|   |              |                                                                                                               |                |      |       |          |                       |       |              |
|   | .            |                                                                                                               |                |      |       |          |                       |       |              |
|   |              |                                                                                                               |                |      |       |          |                       |       |              |

 RIG: Truck Mounted (FG101)
 DRILLER: (FICO) Dudley

 TYPE OF BORING:
 120mm solid flight auger with TC-Bit

 WATER OBSERVATIONS:
 No free groundwater observed

 REMARKS:

LOGGED: Sebastian

CASING: Uncased

 REMARGO.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (xm mdia.)
 PL(D) Point load diametal test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample (xm mdia.)
 PL (D) Point load diametal test Is(50) (MPa)

 D
 Disturbed sample
 V
 Water sample (xm mdia.)
 PL (D) Point load diametal test Is(50) (MPa)

 E
 Environmental sample
 W
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)



**BOREHOLE LOG** SURFACE LEVEL: --CLIENT: Lake Macquarie City Council **BORE No: 205** PROJECT: Additional Investigation EASTING: PROJECT No: 81563.02 LOCATION: 31 to 33 Smith Street, Charlestown NORTHING: DATE: 20/8/2016 DIP/AZIMUTH: 90°/--SHEET 1 OF 1 Sampling & In Situ Testing Graphic Log Well Description Water Depth 쩐 Sample Construction of Depth Results & Comments (m) Type Details Strata ASPHALT 0.03 FILLING - Generally comprising fine to medium grained gravelly sand filling with trace cobbles, moist A 0.2 Е PID <1 0.25 FILLING - Generally comprising brown-red and grey, fine to medium grained gravelly sand filling, moist 0.35 Е PID <1 А 0.4 SANDY CLAY - (Very stiff), brown and yellow sandy clay, M>Wp 0.6 Е PID <1 A 0.8 Bore discontinued at 0.8m, limit of investigation -2 -2

 RIG: Truck Mounted (FG101)
 DRILLER: (FICO) Dudley

 TYPE OF BORING:
 120mm solid flight auger with TC-Bit

 WATER OBSERVATIONS:
 No free groundwater observed

 REMARKS:

LOGGED: Sebastian

CASING: Uncased

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(A) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 ¥
 Water level
 V
 Shear vane (kPa)



SURFACE LEVEL: --EASTING: NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 206 PROJECT No: 81563.02 DATE: 20/8/2016 SHEET 1 OF 1

|   |                |                                                                                                                                                                                                                       |                | DIF  |       |        | <b>-:</b> 90°/     |       | SHEET 1 OF 1            |
|---|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|-------|--------|--------------------|-------|-------------------------|
| Γ | <b>D</b> "     | Description                                                                                                                                                                                                           | jic _          |      | Sam   |        | & In Situ Testing  | Ŀ.    | Well                    |
| R | Depth<br>(m)   | of<br>Strata                                                                                                                                                                                                          | Graphic<br>Log | Type | Depth | Sample | Results & Comments | Water | Construction<br>Details |
|   | 0.03<br>-<br>- | ASPHALT<br>FILLING - Generally comprising brown and grey gravelly<br>silty sand filling, moist                                                                                                                        |                | A    | 0.2   | Ш      | PID <1             |       | -                       |
|   | - 0.6          |                                                                                                                                                                                                                       |                | A    | 0.5   | E      | PID <1             |       | -                       |
|   | -<br>-<br>-1   | SANDY CLAY - Brown and yellow sandy clay, grading to<br>extremely low strength, extremely weathered sandstone,<br>M <wp< td=""><td></td><td>A</td><td>1.0</td><td>E</td><td>PID &lt;1</td><td></td><td>- 1</td></wp<> |                | A    | 1.0   | E      | PID <1             |       | - 1                     |
|   | - 1.1<br>      | Bore discontinued at 1.1m , limit of investigation                                                                                                                                                                    |                |      |       |        |                    |       |                         |

 RIG: Truck Mounted (FG101)
 DRILLER: (FICO) Dudley

 TYPE OF BORING:
 120mm solid flight auger with TC-Bit

 WATER OBSERVATIONS:
 No free groundwater observed

 REMARKS:

Lake Macquarie City Council

Additional Investigation

LOCATION: 31 to 33 Smith Street, Charlestown

CLIENT:

PROJECT:

LOGGED: Sebastian

CASING: Uncased

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)



| CLIENT:   | Lake Macquarie City Council        | SURFACE LEVEL:    |
|-----------|------------------------------------|-------------------|
| PROJECT:  | Additional Investigation           | EASTING:          |
| LOCATION: | 31 to 33 Smith Street, Charlestown | NORTHING:         |
|           |                                    | DIP/AZIMUTH: 90°/ |

BORE No: 207 PROJECT No: 81563.02 DATE: 20/8/2016 SHEET 1 OF 1

|   |       |                                                                                                                                                                          |                | Sampling & In Situ Testing |       |        | & In Situ Testing     |       |              |
|---|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------|-------|--------|-----------------------|-------|--------------|
| 님 | Depth | Description                                                                                                                                                              | Graphic<br>Log |                            |       |        |                       | te –  | Well         |
| R | (m)   | of                                                                                                                                                                       | Grap           | Type                       | Depth | Sample | Results &<br>Comments | Water | Construction |
|   |       | Strata                                                                                                                                                                   | Ŭ              | -                          |       | Sa     |                       |       | Details      |
|   | 0.03  | ASPHALT                                                                                                                                                                  |                |                            |       |        |                       |       |              |
|   |       | FILLING - Generally comprising grey gravelly sand filling,<br>moist                                                                                                      |                |                            |       |        |                       |       |              |
|   | .     | hold                                                                                                                                                                     |                | А                          | 0.2   | Е      | PID <1                |       |              |
|   |       |                                                                                                                                                                          | $\otimes$      |                            |       |        |                       |       |              |
|   | 0.3   | FILLING - Generally comprising mix of dark grey and                                                                                                                      | ĬXX            |                            |       |        |                       |       | -            |
|   | .     | FILLING - Generally comprising mix of dark grey and<br>brown silty sand and sandy clay filling wiht trace roots,<br>red-brown sandstone fragments, possible slag and ash |                |                            |       |        |                       |       | _            |
|   |       | and moderate organic hydrocarbon citrus odour                                                                                                                            |                |                            |       |        |                       |       |              |
|   |       | From 0.4m, mix of light grey and brown sandy clay<br>grading to red and brown extremely low strength,<br>extremely weathered sandstone                                   | $\otimes$      | A                          | 0.5   | E      | PID <1                |       |              |
|   | .     | extremely weathered sandstone                                                                                                                                            | $\mathbb{X}$   |                            |       |        |                       |       | _            |
|   |       |                                                                                                                                                                          |                |                            |       |        |                       |       |              |
|   |       |                                                                                                                                                                          |                |                            |       |        |                       |       |              |
|   | 0.8   |                                                                                                                                                                          |                |                            |       |        |                       |       | -            |
|   |       | SANDY CLAY - (Very stiff), brown and yellow sandy clay,<br>M>Wp                                                                                                          | ·/./.          |                            |       |        |                       |       |              |
|   |       |                                                                                                                                                                          | 1.             |                            |       |        |                       |       |              |
|   | -1    |                                                                                                                                                                          | 1.             | А                          | 1.0   | Е      | PID <1                |       | -1           |
|   |       |                                                                                                                                                                          |                |                            |       |        |                       |       |              |
|   |       |                                                                                                                                                                          | (./.)          |                            |       |        |                       |       |              |
|   |       |                                                                                                                                                                          | ././           |                            |       |        |                       |       | -            |
|   |       |                                                                                                                                                                          | ././           |                            |       |        |                       |       |              |
|   |       |                                                                                                                                                                          | ·/·/·          |                            |       |        |                       |       |              |
|   | .     |                                                                                                                                                                          | ·/./.          |                            |       |        |                       |       | -            |
|   |       |                                                                                                                                                                          | 1.             |                            |       |        |                       |       |              |
|   |       |                                                                                                                                                                          | 1.             | A                          | 1.5   | Е      | PID <1                |       |              |
|   | 1.6   | Dans discontinued at 4 One. Visit of investigation                                                                                                                       |                |                            |       |        |                       |       |              |
|   |       | Bore discontinued at 1.6m , limit of investigation                                                                                                                       |                |                            |       |        |                       |       |              |
|   |       |                                                                                                                                                                          |                |                            |       |        |                       |       |              |
|   | .     |                                                                                                                                                                          |                |                            |       |        |                       |       | -            |
|   |       |                                                                                                                                                                          |                |                            |       |        |                       |       |              |
|   |       |                                                                                                                                                                          |                |                            |       |        |                       |       |              |
|   | -2    |                                                                                                                                                                          |                |                            |       |        |                       |       | -2           |
|   |       |                                                                                                                                                                          |                |                            |       |        |                       |       |              |
|   |       |                                                                                                                                                                          |                |                            |       |        |                       |       |              |
|   |       |                                                                                                                                                                          |                |                            |       |        |                       |       | -            |
|   | .     |                                                                                                                                                                          |                |                            |       |        |                       |       |              |
|   |       |                                                                                                                                                                          |                |                            |       |        |                       |       |              |
|   |       |                                                                                                                                                                          |                |                            |       |        |                       |       | -            |
|   |       |                                                                                                                                                                          |                |                            |       |        |                       |       |              |
|   |       |                                                                                                                                                                          |                |                            |       |        |                       |       |              |
|   |       |                                                                                                                                                                          |                |                            |       |        |                       |       |              |
|   | .     |                                                                                                                                                                          |                |                            |       |        |                       |       |              |
|   |       |                                                                                                                                                                          |                |                            |       |        |                       |       |              |
|   |       |                                                                                                                                                                          |                |                            |       |        |                       |       |              |
|   |       |                                                                                                                                                                          |                |                            |       |        |                       |       |              |
|   |       |                                                                                                                                                                          |                |                            |       |        |                       |       |              |
|   |       |                                                                                                                                                                          |                |                            |       |        |                       |       |              |

 RIG: Truck Mounted (FG101)
 DRILLER: (FICO) Dudley

 TYPE OF BORING:
 120mm solid flight auger with TC-Bit

 WATER OBSERVATIONS:
 No free groundwater observed

 REMARKS:

LOGGED: Sebastian

CASING: Uncased

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PID
 Photo ionisation detector (ppm)

 BLK
 Biock sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)



| CLIENT:   | Lake Macquarie City Council        |
|-----------|------------------------------------|
| PROJECT:  | Additional Investigation           |
| LOCATION: | 31 to 33 Smith Street, Charlestown |

SURFACE LEVEL: --EASTING: NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 208 PROJECT No: 81563.02 DATE: 20/8/2016 SHEET 1 OF 1

|    | _                   | Description                                                                                             | Li             |      | Sam   |        | & In Situ Testing     | -     | Well                    |
|----|---------------------|---------------------------------------------------------------------------------------------------------|----------------|------|-------|--------|-----------------------|-------|-------------------------|
| RL | Depth<br>(m)        | of<br>Strata                                                                                            | Graphic<br>Log | Type | Depth | Sample | Results &<br>Comments | Water | Construction<br>Details |
|    | -                   | FILLING - Generally comprising dark brown sandy silt filling with abundant rootlets and organics, moist |                | A    | 0.2   | E      | PID <1<br>PID <1      |       | -                       |
|    | - 0.4 -<br>-<br>-   | FILLING - Generally comprising brown sand filling with some gravel, moist                               |                |      |       |        |                       |       | -                       |
|    | - 0.8 -<br>-<br>- 1 | SANDY CLAY - (Stiff), brown and yellow sandy clay with trace gravel, M>Wp                               |                | А    | 1.0   | E      | PID <1                |       | - 1                     |
|    | -<br>-              | From 1.1m, grading to red and orange extremely low strength, extremely weathered sandstone              |                |      |       |        |                       |       | -                       |
|    | - 1.5 -             | Bore discontinued at 1.5m , limit of investigation                                                      |                | A    | 1.4   | E      | PID <1                |       |                         |
|    |                     |                                                                                                         |                |      |       |        |                       |       | -                       |
|    | -2                  |                                                                                                         |                |      |       |        |                       |       | -2                      |
|    | -                   |                                                                                                         |                |      |       |        |                       |       | -                       |
|    | -                   |                                                                                                         |                |      |       |        |                       |       | -                       |
|    |                     |                                                                                                         |                |      |       |        |                       |       | -                       |
|    |                     |                                                                                                         |                |      |       |        |                       |       |                         |

 RIG: Truck Mounted (FG101)
 DRILLER: (FICO) Dudley

 TYPE OF BORING:
 120mm solid flight auger with TC-Bit

 WATER OBSERVATIONS:
 No free groundwater observed

 REMARKS:

LOGGED: Sebastian

CASING: Uncased

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Buik sample
 P
 Piston sample
 PID
 Photo ionisation detector (ppm)

 BLK
 Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)



| CLIENT:   | Lake Macquarie City Council        | S |
|-----------|------------------------------------|---|
| PROJECT:  | Additional Investigation           | E |
| LOCATION: | 31 to 33 Smith Street, Charlestown | N |

SURFACE LEVEL: --EASTING: NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 209 PROJECT No: 81563.02 DATE: 20/8/2016 SHEET 1 OF 1

|          |                              | Description                                                                                                                                                                                                        | lic            |      | Sam   |        | & In Situ Testing     | <u>ب</u> | Well                    |
|----------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|-------|--------|-----------------------|----------|-------------------------|
| 님        | Depth<br>(m)                 | of                                                                                                                                                                                                                 | Graphic<br>Log | Type | Depth | Sample | Results &<br>Comments | Water    | Construction<br>Details |
| $\vdash$ | 0.03                         | Strata                                                                                                                                                                                                             |                |      |       | S      |                       | +        | Details                 |
|          | -                            | FILLING - Generally comprising grey gravelly sand filling, moist                                                                                                                                                   |                | A    | 0.2   | E      | PID <1                |          | -                       |
|          | - 0.3<br>-<br>-              | FILLING - Generally comprising mix of brown and grey<br>silty grey sand with some gravel and dark grey gravelly<br>sandy clay filling with trace hydrocarbon odour (possible<br>organic citrus odour), moist, M>Wp |                | A    | 0.5   | E      | PID <1                |          | -                       |
|          | - 1                          |                                                                                                                                                                                                                    |                | A    | 1.0   | E      | PID <1                |          | -1                      |
|          | -                            | SANDY CLAY - Brown-yellow and red sandy clay, M>Wp<br>From 1.35m, grading to extremely low strength, extremely<br>weathered brown and red sandstone                                                                |                | A    | 1.4   | E      | PID <1                |          | -                       |
|          | - 1.5 <sup>-</sup><br>-<br>- | Bore discontinued at 1.5m , limit of investigation                                                                                                                                                                 |                |      |       |        |                       |          | -                       |
|          | -2                           |                                                                                                                                                                                                                    |                |      |       |        |                       |          | -2                      |
|          | -                            |                                                                                                                                                                                                                    |                |      |       |        |                       |          |                         |
|          | -                            |                                                                                                                                                                                                                    |                |      |       |        |                       |          |                         |

 RIG: Truck Mounted (FG101)
 DRILLER: (FICO) Dudley

 TYPE OF BORING:
 120mm solid flight auger with TC-Bit

 WATER OBSERVATIONS:
 No free groundwater observed

 REMARKS:

LOGGED: Sebastian

CASING: Uncased

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test 1s(50) (MPa)

 BLK
 Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load axial test 1s(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p
 Pocket pentrometer (kPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)



| CLIENT:   | Lake Macquarie City Council        | SURFACE LEVEL:    | - |
|-----------|------------------------------------|-------------------|---|
| PROJECT:  | Additional Investigation           | EASTING:          |   |
| LOCATION: | 31 to 33 Smith Street, Charlestown | NORTHING:         |   |
|           |                                    | DIP/AZIMUTH: 90°/ | ' |

BORE No: 210 PROJECT No: 81563.02 DATE: 20/8/2016 SHEET 1 OF 1

|    |              |                                                                                                                              |                |      |                            |        |                    |       | ]                       |
|----|--------------|------------------------------------------------------------------------------------------------------------------------------|----------------|------|----------------------------|--------|--------------------|-------|-------------------------|
|    | Depth        | Description                                                                                                                  | g              |      | Sampling & In Situ Testing |        |                    | Well  |                         |
| RL | (m)          | of<br>Strata                                                                                                                 | Graphic<br>Log | Type | Depth                      | Sample | Results & Comments | Water | Construction<br>Details |
|    | 0.03         | - ASPHALT                                                                                                                    |                |      |                            | 0)     |                    |       |                         |
|    | -            | FILLING - Generally comprising grey gravelly sandy filling, moist                                                            |                | А    | 0.1                        | Е      | PID <1             |       | -                       |
|    | - 0.2 -      | FILLING - Generally comprising brown and red gravelly<br>sand filling, moist                                                 |                | А    | 0.3                        | E      | PID <1             |       |                         |
|    | - 0.4 -      | FILLING - Generally comprising dark grey gravelly sandy<br>clay filling with trace hydrocarbon odour and slag / ash,<br>M>Wp |                | A    | 0.5                        | E      | PID <1             |       | -                       |
|    | - 0.6 -      | FILLING - Generally comprising brown and grey silty gravelly sand filling, moist                                             |                |      |                            |        |                    |       | -                       |
|    | -            | From 0.8m, increase drilling resistance                                                                                      | $\bigotimes$   |      |                            |        |                    |       | -                       |
|    | 0.85         | SANDY CLAY - Brown and red sandy clay, M>Wp                                                                                  |                |      |                            |        |                    |       | -                       |
|    | - 1          |                                                                                                                              |                |      |                            |        |                    |       | -1                      |
|    | -<br>- 1.3 - |                                                                                                                              |                | A    | 1.2                        | E      | PID <1             |       |                         |
|    | 2            |                                                                                                                              |                |      |                            |        |                    |       |                         |

 RIG: Truck Mounted (FG101)
 DRILLER: (FICO) Dudley

 TYPE OF BORING:
 120mm solid flight auger with TC-Bit

 WATER OBSERVATIONS:
 No free groundwater observed

 REMARKS:

LOGGED: Sebastian

CASING: Uncased

 REMARKS.

 SAMPLING & IN SITU TESTING LEGEND

 A Auger sample
 G Gas sample
 PID
 Photo ionisation detector (ppm)

 B Bulk sample
 P
 Piston sample
 PL(A) Point bad axial test Is(50) (MPa)

 BLK Block sample
 U, Tube sample (x mm dia.)
 PL(D) Point bad axial test Is(50) (MPa)

 C Core drilling
 W Water sample (x mm dia.)
 PL(D) Point bad diametal test Is(50) (MPa)

 D Disturbed sample
 W Water seep
 S Standard penetrometer (kPa)

 E Environmental sample
 Water level
 V Shear vane (kPa)



| CLIENT:   | Lake Macquarie City Council        | SURFACE LEVE | :L:  |
|-----------|------------------------------------|--------------|------|
| PROJECT:  | Additional Investigation           | EASTING:     |      |
| LOCATION: | 31 to 33 Smith Street, Charlestown | NORTHING:    |      |
|           |                                    | DIP/AZIMUTH: | 90°/ |

BORE No: 211 PROJECT No: 81563.02 DATE: 20/8/2016 SHEET 1 OF 1

|    |                                 |                                                                                                            | -              |      |       |        |                       |       | 1                       |
|----|---------------------------------|------------------------------------------------------------------------------------------------------------|----------------|------|-------|--------|-----------------------|-------|-------------------------|
|    |                                 | Description                                                                                                | .e             |      | Sam   |        | & In Situ Testing     | 2     | Well                    |
| RL | Depth<br>(m)                    | of<br>Strata                                                                                               | Graphic<br>Log | Type | Depth | Sample | Results &<br>Comments | Water | Construction<br>Details |
| H  | 0.03 -                          | ASPHALT                                                                                                    |                |      |       | 0      |                       |       |                         |
|    |                                 | FILLING - Generally comprising grey fine to medium grained gravelly sand filling with trace cobbles, moist |                | A    | 0.2   | E      | PID <1                |       | -                       |
|    |                                 |                                                                                                            |                | A    | 0.5   | Е      | PID <1                |       | -                       |
|    | - 0.8 -<br>- 1                  | SANDY CLAY - (Very stiff), brown and yellow sandy clay,<br>M>Wp                                            |                | A    | 1.0   | E      | PID <1                |       | - 1                     |
|    |                                 |                                                                                                            |                | ~    | 1.0   | L      |                       |       | -                       |
|    | · 1.2                           | Bore discontinued at 1.2m , limit of investigation                                                         | <u> </u>       |      |       |        |                       |       |                         |
|    | ·<br>·<br>·<br>·<br>·<br>·<br>· |                                                                                                            |                |      |       |        |                       |       |                         |

 RIG: Truck Mounted (FG101)
 DRILLER: (FICO) Dudley

 TYPE OF BORING:
 120mm solid flight auger with TC-Bit

 WATER OBSERVATIONS:
 No free groundwater observed

 REMARKS:

LOGGED: Sebastian

CASING: Uncased

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test 1s(50) (MPa)

 BLK
 Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load axial test 1s(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p
 Pocket pentrometer (kPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)



| CLIENT:   | Lake Macquarie City Council        |
|-----------|------------------------------------|
| PROJECT:  | Additional Investigation           |
| LOCATION: | 31 to 33 Smith Street, Charlestown |

SURFACE LEVEL: --EASTING: NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 212 PROJECT No: 81563.02 DATE: 20/8/2016 SHEET 1 OF 1

|              | Description                                                                                                               | ic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | & In Situ Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ļ                                                                                                                                                                            | Well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth<br>(m) | of<br>Strata                                                                                                              | Graph<br>Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Results &<br>Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Wate                                                                                                                                                                         | Construction<br>Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.03 -       | _ASPHALT /                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -            | grained gravelly sand filling with trace cobbles, moist                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PID <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -            |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PID <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| - 0.5 -      | FILLING - Generally comprising mix of brown silty gravelly<br>sand and dark grey sandy clay filling with trace ash / slag |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -            | with slight hydrocarbon odour                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PID <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| - 0.8 -      | SANDY CLAY - (Very stiff), brown and yellow sandy clay,<br>M>Wp                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -1           |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                              | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -            |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PID <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -            |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| - 1.5 -      | Bore discontinued at 1.5m, limit of investigation                                                                         | · · / · / ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -            |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -            |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -2           |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                              | -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -            |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -            |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -            |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -            |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -            |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -            |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              | 0.03<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                       | (m)       Of         Strata       0.03         ASPHALT       FILLING - Generally comprising grey fine to medium grained gravelly sand filling with trace cobbles, moist         0.5       FILLING - Generally comprising mix of brown silty gravelly sand and dark grey sandy clay filling with trace ash / slag with slight hydrocarbon odour         0.8       SANDY CLAY - (Very stiff), brown and yellow sandy clay, M>Wp         -1       Bore discontinued at 1.5m , limit of investigation | Depth<br>(m)       of<br>Strata         0.03       ASPHALT<br>FILLING - Generally comprising grey fine to medium<br>grained gravelly sand filling with trace cobbles, moist         0.5       FILLING - Generally comprising mix of brown silty gravelly<br>sand and dark grey sandy clay filling with trace ash / slag<br>with slight hydrocarbon odour         0.8       SANDY CLAY - (Very stiff), brown and yellow sandy clay,<br>M>Wp         1.5       Bore discontinued at 1.5m , limit of investigation | 0.03       ASPHALT         FILLING - Generally comprising grey fine to medium grained gravelly sand filling with trace cobbles, moist       A         0.5       FILLING - Generally comprising mix of brown silty gravelly sand and dark grey sandy clay filling with trace ash / slag with slight hydrocarbon odour       A         0.8       SANDY CLAY - (Very stiff), brown and yellow sandy clay, M>Wp       A         1.5       Bore discontinued at 1.5m , limit of investigation       A | Depth<br>(m)       of<br>Strata       g<br>g<br>g<br>g<br>g       g<br>g<br>g<br>g       g<br>g<br>g<br>g       g<br>g<br>g<br>g       g<br>g<br>g       g<br>g<br>g       g<br>g<br>g       g<br>g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g<br>g       g       g </td <td>Depth<br/>(m)       of       isometry         0.03       ASPHALT       ASPHALT         FILLING - Generally comprising grey fine to medium<br/>grained gravelly sand filling with trace cobbles, moist       A       0.2       E         0.5       FILLING - Generally comprising mix of brown silty gravelly<br/>sand and dark grey sandy clay filling with trace ash / slag<br/>with slight hydrocarbon odour       A       0.4       E         0.8       SANDY CLAY - (Very stiff), brown and yellow sandy clay,<br/>M&gt;Wp       A       1.2       E         1.5       Bore discontinued at 1.5m , limit of investigation       I       I       I       I</td> <td>0.03       ASPHALT         FILLING - Generally comprising grey fine to medium grained gravelly sand filling with trace cobbles, moist       A       0.2       E       PID &lt;1</td> 0.05       FILLING - Generally comprising mix of brown silty gravelly sand and dark grey sandy clay filling with trace ash / slag with slight hydrocarbon odour       A       0.4       E       PID <1 | Depth<br>(m)       of       isometry         0.03       ASPHALT       ASPHALT         FILLING - Generally comprising grey fine to medium<br>grained gravelly sand filling with trace cobbles, moist       A       0.2       E         0.5       FILLING - Generally comprising mix of brown silty gravelly<br>sand and dark grey sandy clay filling with trace ash / slag<br>with slight hydrocarbon odour       A       0.4       E         0.8       SANDY CLAY - (Very stiff), brown and yellow sandy clay,<br>M>Wp       A       1.2       E         1.5       Bore discontinued at 1.5m , limit of investigation       I       I       I       I | 0.03       ASPHALT         FILLING - Generally comprising grey fine to medium grained gravelly sand filling with trace cobbles, moist       A       0.2       E       PID <1 | Deptitie       Description       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata       Image: Strata <thimage: strata<="" th=""></thimage:> |

 RIG: Truck Mounted (FG101)
 DRILLER: (FICO) Dudley

 TYPE OF BORING:
 120mm solid flight auger with TC-Bit

 WATER OBSERVATIONS:
 No free groundwater observed

 REMARKS:

LOGGED: Sebastian

CASING: Uncased

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test 1s(50) (MPa)

 BLK
 Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load axial test 1s(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p
 Pocket pentrometer (kPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)



SURFACE LEVEL: --EASTING: LOCATION: 31 to 33 Smith Street, Charlestown NORTHING: **DIP/AZIMUTH:** 90°/-- **BORE No:** 213 PROJECT No: 81563.02 DATE: 20/8/2016 SHEET 1 OF 1

|   |              |                                                                                                    |                |      |       |        | <b>h:</b> 90 /        |          |                         |
|---|--------------|----------------------------------------------------------------------------------------------------|----------------|------|-------|--------|-----------------------|----------|-------------------------|
|   |              | Description                                                                                        | je             |      | Sam   |        | & In Situ Testing     | <u> </u> | Well                    |
| R | Depth<br>(m) | of<br>Strata                                                                                       | Graphic<br>Log | Type | Depth | Sample | Results &<br>Comments | Water    | Construction<br>Details |
|   | 0.03         | - ASPHALT                                                                                          | $\times$       |      |       |        |                       |          |                         |
| - |              | FILLING - Generally comprising grey gravelly sand filling,<br>moist                                |                | A    | 0.2   | E      | PID <1                |          | -                       |
| - | 0.4 -        | FILLING - Generally comprising red-brown gravelly sand filling with trace sandy clay, moist to wet |                | A    | 0.5   | E      | PID <1                |          | -                       |
| - | 0.8 -        | SANDY CLAY - (Very stiff), brown and yellow sandy clay,<br>M>Wp                                    |                | А    | 1.0   | E      | PID <1                |          | -1                      |
|   | 2            | Bore discontinued at 1.3m , limit of investigation                                                 |                |      |       |        |                       |          |                         |

DRILLER: (FICO) Dudley **RIG:** Truck Mounted (FG101) TYPE OF BORING: 120mm solid flight auger with TC-Bit WATER OBSERVATIONS: No free groundwater observed **REMARKS:** 

Lake Macquarie City Council

Additional Investigation

CLIENT:

PROJECT:

LOGGED: Sebastian

CASING: Uncased

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level G P U, W ₽



Lake Macquarie City Council

Additional Investigation

LOCATION: 31 to 33 Smith Street, Charlestown

CLIENT: PROJECT:

| SURFACE LEV  | EL:  |
|--------------|------|
| EASTING:     |      |
| NORTHING:    |      |
| DIP/AZIMUTH: | 90°/ |

BORE No: 214 PROJECT No: 81563.02 DATE: 20/8/2016 SHEET 1 OF 1

|   | Denth        | Description                                                                                                                           | jc T           |      | Sam   |        | & In Situ Testing  | 5     | Well                    |
|---|--------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------|------|-------|--------|--------------------|-------|-------------------------|
| R | Depth<br>(m) | of<br>Strata                                                                                                                          | Graphic<br>Log | Type | Depth | Sample | Results & Comments | Water | Construction<br>Details |
|   | - 0.1        | FILLING - Generally comprising brown silty fine to<br>medium grained sand filling with some rootlets, gravel and                      |                | A    | 0.05  | E      | PID <1             |       | -                       |
|   | -            | SANDY CLAY - (Very stiff), brown-orange mottled fine to medium grained sandy clay, M>Wp                                               |                | A    | 0.2   | E      | PID <1             |       |                         |
|   | - 0.5        | From 0.4m, orange and brown sandy clay with red and<br>light grey mottling, grading to extremely low strength,<br>extremely weathered |                | A    | 0.45  | E      | PID <1             |       | -                       |
|   | -            | From 0.5m, auger spinning<br>Bore discontinued at 0.5m, virtual refusal                                                               |                |      |       |        |                    |       | -                       |
|   | -            |                                                                                                                                       |                |      |       |        |                    |       | -                       |
|   | -            |                                                                                                                                       |                |      |       |        |                    |       |                         |
|   | - 1<br>-     |                                                                                                                                       |                |      |       |        |                    |       | -1                      |
|   | -            |                                                                                                                                       |                |      |       |        |                    |       |                         |
|   | -            |                                                                                                                                       |                |      |       |        |                    |       |                         |
|   | -            |                                                                                                                                       |                |      |       |        |                    |       | -                       |
|   | -            |                                                                                                                                       |                |      |       |        |                    |       | -                       |
|   | -            |                                                                                                                                       |                |      |       |        |                    |       | -                       |
|   | -2           |                                                                                                                                       |                |      |       |        |                    |       | -2                      |
|   | -            |                                                                                                                                       |                |      |       |        |                    |       | -                       |
|   | -            |                                                                                                                                       |                |      |       |        |                    |       |                         |
|   | -            |                                                                                                                                       |                |      |       |        |                    |       |                         |
|   | -            |                                                                                                                                       |                |      |       |        |                    |       |                         |
|   | -            |                                                                                                                                       |                |      |       |        |                    |       |                         |
|   | -            |                                                                                                                                       |                |      |       |        |                    |       |                         |

RIG: Hand Tools

TYPE OF BORING: Hand Auger

DRILLER: Sebastian

LOGGED: Sebastian

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)



## **BOREHOLE LOG**

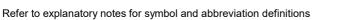
SURFACE LEVEL: 107.7 AHD COORDINATE E:378148.5 N: 6351797.7 PROJECT No: 210780.01 DATUM/GRID: MGA94 Zone 56 DIP/AZIMUTH: 90°/---

LOCATION ID: 1001 DATE: 09/05/22 - 17/05/22 SHEET: 1 of 16

|             |     |           | CO                                                                                                                                                 | NDITIO                |                       |       |                                                                                                                                             | ERED   | )         |    | -   | 0017       |                                  |                      | SA                | MPL  | E        |           |           | TESTING                   |
|-------------|-----|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|----|-----|------------|----------------------------------|----------------------|-------------------|------|----------|-----------|-----------|---------------------------|
| GROUNDWATER |     | DEPTH (m) | DESCRIPTION<br>OF<br>STRATA                                                                                                                        | GRAPHIC               | ORIGIN <sup>(#)</sup> |       | MOISTURE                                                                                                                                    | WEATH. | DEPTH (m) |    | •   | RECOVERY O | SPACING<br>SPACING<br>(m)<br>(m) | DEFECTS &<br>REMARKS | SAMPLE<br>REMARKS | ТҮРЕ | INTERVAL | DEPTH (m) | TEST TYPE | RESULTS<br>AND<br>REMARKS |
|             |     | 0.0       | FILL/ (CH) CLAY, with gravel; yellow<br>brown; clay fraction high plasticity;<br>gravel fraction fine to medium,<br>sub-angular to sub-rounded     |                       | FILL                  | NA    | >PL                                                                                                                                         |        |           |    |     |            |                                  |                      | 1                 |      |          |           |           |                           |
| -           |     | 1.0       | (CH) CLAY, with sand; yellow brown<br>mottled grey; clay fraction high<br>plasticity; sand fraction fine to                                        |                       | RES                   | (ST)  | >PL                                                                                                                                         | -      |           |    |     |            |                                  |                      |                   |      |          | - 1 -     |           |                           |
|             | 100 | -         | medium<br>(CL) Sandy CLAY; orange brown<br>mottled grey; clay fraction low<br>plasticity; sand fraction fine to<br>medium                          |                       |                       | (VST) | <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>- 2 -</td><td></td><td></td></pl<> |        |           |    |     |            |                                  |                      |                   |      |          | - 2 -     |           |                           |
|             | GU1 | 3         |                                                                                                                                                    |                       | RES                   | (VST) | <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>- 3 -</td><td></td><td></td></pl<> |        |           |    |     |            |                                  |                      |                   |      |          | - 3 -     |           |                           |
|             |     | 3.4       | (CH) CLAY, with gravel; red brown<br>mottled grey; clay fraction high<br>plasticity; gravel fraction fine to<br>medium, sub-angular to sub-rounded |                       | RES                   | (ST)  | >PL                                                                                                                                         |        |           |    |     |            |                                  |                      |                   |      |          | - 4 -     |           |                           |
|             | 103 | 4.5       | CONGLOMERATE; grey brown; fine to coarse                                                                                                           |                       |                       |       |                                                                                                                                             |        | - 4.5 -   |    |     |            |                                  |                      |                   |      |          | - 5 -     |           |                           |
|             | 201 | 6         |                                                                                                                                                    | $\mathcal{P}^{\circ}$ |                       |       |                                                                                                                                             | MW     |           |    |     |            |                                  |                      |                   |      |          | - 6 -     |           |                           |
|             | 101 | -         |                                                                                                                                                    |                       |                       |       |                                                                                                                                             |        | - 6.5     |    |     |            |                                  |                      |                   |      |          |           |           |                           |
|             | 001 | 7-        |                                                                                                                                                    |                       |                       |       |                                                                                                                                             |        |           | UK |     |            |                                  |                      |                   |      |          | - 7 -     |           |                           |
|             | 66  |           |                                                                                                                                                    |                       |                       |       | :                                                                                                                                           | SW-FF  | R         |    |     |            |                                  |                      |                   |      |          |           |           |                           |
| -           | 200 | -         |                                                                                                                                                    |                       |                       |       |                                                                                                                                             |        |           |    | 1.1 |            |                                  |                      |                   |      |          |           |           |                           |
|             |     |           | in is "probable" unless otherwise stated. <sup>(*)</sup> Con<br>drapower Scout Switched to I                                                       |                       |                       |       |                                                                                                                                             |        |           |    |     |            | between coh                      | nesive and g         | ranular mat       |      |          | SED:      |           |                           |

PLANT: Hydrapower Scout Switched to Henjin DB8 from 140 m depth OPERATOR: METHOD: AT to 5.5m, then WB to 157.3m CASING: HWT to 5.5m **REMARKS:** Coordinates obtained using a differential GPS typically accurate to ±0.1 m.




#### **BOREHOLE LOG**

SURFACE LEVEL: 107.7 AHD COORDINATE E:378148.5 N: 6351797.7 PROJECT No: 210780.01 DATUM/GRID: MGA94 Zone 56 DIP/AZIMUTH: 90°/---

LOCATION ID: 1001 DATE: 09/05/22 - 17/05/22 SHEET: 2 of 16

|   |        |           |                                                | CONDITIO | DNS | JNTE     | RED    | )         | •                  |                   |     |                                                                    |                      | SA                | MPL  | E        | -         |           | TESTING                  |
|---|--------|-----------|------------------------------------------------|----------|-----|----------|--------|-----------|--------------------|-------------------|-----|--------------------------------------------------------------------|----------------------|-------------------|------|----------|-----------|-----------|--------------------------|
|   | RL (m) | DEPTH (m) | DESCRIPTION<br>OF<br>STRATA                    | GRAPHIC  |     | MOISTURE | WEATH. | DEPTH (m) | M<br>M<br>STRENGTH | RECOVERY O<br>(%) | RQD | 878<br>878<br>878<br>878<br>878<br>878<br>878<br>878<br>878<br>878 | DEFECTS &<br>REMARKS | SAMPLE<br>REMARKS | TYPE | INTERVAL | DEPTH (m) | TEST TYPE | RESULTS<br>AND<br>REMARK |
| Ē |        | -         | CONGLOMERATE; grey brown to coarse (continued) | ; fine   | )   |          |        |           |                    |                   |     |                                                                    |                      |                   |      |          |           |           |                          |
| - | 96 97  | 11 -      |                                                |          |     |          |        |           |                    |                   |     |                                                                    |                      |                   |      |          | - 11 -    |           |                          |
|   | 95     | 13 -      |                                                |          |     |          |        |           |                    |                   |     |                                                                    |                      |                   |      |          | - 13 -    |           |                          |
| - | 93 94  | 14 -      |                                                |          |     | S        | W-FF   | 1         | UK                 |                   |     |                                                                    |                      |                   |      |          | - 14 -    |           |                          |
|   | 92     | 15 -      |                                                |          |     |          |        |           |                    |                   |     |                                                                    | 1                    |                   |      |          | - 15 -    |           |                          |
| - | -6     |           |                                                |          |     | _        |        | -17.5-    |                    |                   |     |                                                                    |                      |                   |      |          | - 17 -    |           |                          |
| - | 89     | 18 -      | SANDSTONE; grey; fine to mec                   |          |     |          |        |           |                    |                   |     |                                                                    |                      |                   |      |          | - 18 -    |           |                          |
| - | 88     | 19 -      |                                                |          |     | s        | W-FF   | ł         | UK                 |                   |     |                                                                    |                      |                   |      |          | - 19 -    |           |                          |
| ŀ |        | -         | in is "probable" unless otherwise stated       |          |     |          |        |           |                    |                   |     |                                                                    |                      |                   |      |          |           |           |                          |

PLANT: Hydrapower Scout Switched to Henjin DB8 from 140 m depth OPERATOR: **METHOD:** AT to 5.5m, then WB to 157.3m CASING: HWT to 5.5m **REMARKS:** Coordinates obtained using a differential GPS typically accurate to ±0.1 m.



### **BOREHOLE LOG**

SURFACE LEVEL: 107.7 AHD COORDINATE E:378148.5 N: 6351797.7 PROJECT No: 210780.01 DATUM/GRID: MGA94 Zone 56 DIP/AZIMUTH: 90°/---

LOCATION ID: 1001 DATE: 09/05/22 - 17/05/22 SHEET: 3 of 16

|             | 1                                |                      | CO                                                           | DITIO          | NS E                  |           |          | ERED      | )         |                    |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | SA                | MPL       | E        |           |           | TESTING        |
|-------------|----------------------------------|----------------------|--------------------------------------------------------------|----------------|-----------------------|-----------|----------|-----------|-----------|--------------------|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|-----------|----------|-----------|-----------|----------------|
| GROUNDWATER | RL (m)                           | DEPTH (m)            | DESCRIPTION<br>OF                                            | GRAPHIC        | ORIGIN <sup>(#)</sup> |           | MOISTURE | WEATH.    | DEPTH (m) | M<br>M<br>STRENGTH |           |          | 001 FRACTURE<br>078 SPACING<br>078 (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DEFECTS &<br>REMARKS | SAMPLE<br>REMARKS | TYPE      | INTERVAL | DEPTH (m) | TEST TYPE | RESULTS<br>AND |
| GF          | ۲.                               | ä                    | SANDSTONE; grey; fine to medium                              | 5              | ō                     |           | ž        | 3         | ō         | ≓₋≥≖≍i             | ಗೆ ಸ್ಟ್ರೆ | ž        | 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 20 | ם א                  | S I               | ŕ         | Z        | Ö         | Ξ         | REMARKS        |
|             | -                                | -                    | (continued)                                                  |                |                       |           |          |           |           |                    |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |           |          |           |           |                |
|             | 87                               | -                    |                                                              |                |                       |           |          |           |           |                    |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |           |          |           |           |                |
|             | -                                | -<br>21 <del>-</del> |                                                              |                |                       |           |          |           |           |                    |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |           |          | - 21 -    |           |                |
|             | _                                | -                    |                                                              |                |                       |           |          |           |           |                    |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |           |          | · ·       |           |                |
|             | 86                               | -                    | 21.0-22.0m: Conglomerate band –                              |                |                       |           |          |           |           |                    |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |           |          |           |           |                |
|             | -                                | 22-                  |                                                              |                |                       |           |          |           |           |                    |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |           |          | - 22 -    |           |                |
|             | -                                | -                    |                                                              |                |                       |           |          |           |           |                    |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |           |          |           |           |                |
|             | 85                               | -                    |                                                              |                |                       |           |          |           |           |                    |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |           |          | <br>      |           |                |
|             | _ ∞<br>-                         | -                    |                                                              |                |                       |           |          | SW-FF     |           | UK                 |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |           |          |           |           |                |
|             | -                                | 23 -                 |                                                              |                |                       |           | ·        | סיי-רר    | ί.        | UK                 |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |           |          | - 23 -    |           |                |
|             | -                                | -                    |                                                              |                |                       |           |          |           |           |                    |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |           |          | · ·       |           |                |
|             | 84                               | -                    |                                                              |                |                       |           |          |           |           |                    |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |           |          |           |           |                |
|             | -                                | 24 -                 |                                                              |                |                       |           |          |           |           |                    |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |           |          | - 24 -    |           |                |
|             | -                                | -                    |                                                              |                |                       |           |          |           |           |                    |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |           |          |           |           |                |
|             | 83-                              | -                    |                                                              |                |                       |           |          |           |           |                    |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |           |          |           |           |                |
|             | _                                | 25                   |                                                              |                |                       |           |          |           |           |                    |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |           |          | - 25 -    |           |                |
|             | -                                | -                    |                                                              |                |                       |           |          |           |           |                    |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |           |          |           |           |                |
|             | 82                               | -                    |                                                              |                |                       |           |          |           |           |                    |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |           |          | · ·       |           |                |
|             |                                  | 26.0-                | CONGLOMERATE; grey; fine and coarse                          | 200            |                       |           |          |           | -26.0-    |                    |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |           |          | - 26 -    |           |                |
|             | -                                | -                    |                                                              | )°C            |                       |           |          |           |           |                    |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |           |          | · ·       |           |                |
|             | 8                                | -                    |                                                              |                |                       |           |          |           |           |                    |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |           |          |           |           |                |
|             | -                                | 27-                  |                                                              | 200            |                       |           |          |           |           |                    |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |           |          | - 27 -    |           |                |
| I           | -                                | -                    |                                                              | Doc            |                       |           |          |           |           |                    |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |           |          |           |           |                |
| 1           | 80                               | -                    |                                                              |                |                       |           |          |           |           |                    |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |           |          | <br>      |           |                |
|             | -                                | 28-                  |                                                              | b<br>D<br>C    |                       |           | \$       | SW-FF     | R         | UK                 |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |           |          | - 28 -    |           |                |
|             | -                                | -                    |                                                              | boc            |                       |           |          |           |           |                    |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |           |          |           |           |                |
|             | 62                               | -                    |                                                              | <sup>b</sup> O |                       |           |          |           |           |                    |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |           |          | <br>      |           |                |
|             | -                                | 29 -                 |                                                              | 100            |                       |           |          |           |           |                    |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |           |          | - 29 -    |           |                |
|             | -<br>-                           | -                    |                                                              | 50             |                       |           |          |           |           |                    |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |           |          | · ·       |           |                |
|             | - 82                             | -                    |                                                              | F)             |                       |           |          |           |           |                    |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                   |           |          |           |           |                |
| NOTE        | -<br> -<br> S: <sup>(#)</sup>  S | -<br>Soil orig       | in is "probable" unless otherwise stated. <sup>(")</sup> Con | sistency/Re    | elative               | density s | shading  | is for vi | sual ref  | erence only        | - no cor  | relation |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | esive and g          | granular mat      | erials is | implied  |           |           |                |

PLANT: Hydrapower Scout Switched to Henjin DB8 from 140 m depth OPERATOR: CASING: HWT to 5.5m METHOD: AT to 5.5m, then WB to 157.3m **REMARKS:** Coordinates obtained using a differential GPS typically accurate to ±0.1 m.

LOGGED: RLP/CTB



### **BOREHOLE LOG**

SURFACE LEVEL: 107.7 AHD COORDINATE E:378148.5 N: 6351797.7 PROJECT No: 210780.01 DATUM/GRID: MGA94 Zone 56 DIP/AZIMUTH: 90°/---

LOCATION ID: 1001 DATE: 09/05/22 - 17/05/22 SHEET: 4 of 16

|             |        |                                                                          | COI                                                | NDITIO  | NS E |                                                   | INTĘ     | RED    | )         |            |                 |     |                                        |                      | SA                | MPL  | E        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | TESTING                   |
|-------------|--------|--------------------------------------------------------------------------|----------------------------------------------------|---------|------|---------------------------------------------------|----------|--------|-----------|------------|-----------------|-----|----------------------------------------|----------------------|-------------------|------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------|
| ~           |        |                                                                          |                                                    |         |      | SOIL                                              |          |        |           | - F        | ROCK            |     |                                        |                      | -                 |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                           |
| GROUNDWATER | RL (m) | DEPTH (m)                                                                | DESCRIPTION<br>OF<br>STRATA                        | GRAPHIC |      | CONSIS. <sup>(1)</sup><br>DENSITY. <sup>(2)</sup> | MOISTURE | WEATH. | DEPTH (m) | M STRENGTH | RECOVERY<br>(%) | RQD | 001 FRACTURE<br>895 SPACING<br>500 (m) | DEFECTS &<br>REMARKS | SAMPLE<br>REMARKS | түре | INTERVAL | DEPTH (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TEST TYPE | RESULTS<br>AND<br>REMARKS |
|             | È      | -                                                                        | CONGLOMERATE; grey; fine and<br>coarse (continued) | P O     |      |                                                   |          |        |           |            |                 |     |                                        |                      |                   |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                           |
|             | 1      | 31-<br>32-<br>33-<br>33-<br>33-<br>33-<br>33-<br>33-<br>33-<br>33-<br>33 | CONGLOMERATE; grey; fine and                       |         |      |                                                   | S        | W-FR   |           | UK         |                 |     |                                        |                      |                   |      |          | - 32 -<br>- 32 -<br>- 32 -<br>- 33 -<br>- 33 -<br>- 33 -<br>- 33 -<br>- 33 -<br>- 33 -<br>- 33 -<br>- 33 -<br>- 33 -<br>- 33 -<br>- 33 -<br>- 33 -<br>- 33 -<br>- 33 -<br>- 33 -<br>- 33 -<br>- 33 -<br>- 33 -<br>- 33 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- 32 -<br>- |           |                           |

PLANT: Hydrapower Scout Switched to Henjin DB8 from 140 m depth OPERATOR: CASING: HWT to 5.5m METHOD: AT to 5.5m, then WB to 157.3m **REMARKS:** Coordinates obtained using a differential GPS typically accurate to ±0.1 m.



### **BOREHOLE LOG**

SURFACE LEVEL: 107.7 AHD COORDINATE E:378148.5 N: 6351797.7 PROJECT No: 210780.01 DATUM/GRID: MGA94 Zone 56 DIP/AZIMUTH: 90°/---

LOCATION ID: 1001 DATE: 09/05/22 - 17/05/22 SHEET: 5 of 16

|             | 1        |           | CO                                                            | NDITIO  | NS E |            | INTE     | RED    | )         |            |                 |         |                             |           |         | SA                | MPL  | E        |           |           | TESTING                   |
|-------------|----------|-----------|---------------------------------------------------------------|---------|------|------------|----------|--------|-----------|------------|-----------------|---------|-----------------------------|-----------|---------|-------------------|------|----------|-----------|-----------|---------------------------|
| ~           |          |           |                                                               |         |      | SOIL       |          |        |           | F<br>-     | ROCK            |         | ш                           |           |         |                   |      |          |           |           |                           |
| GROUNDWATER | RL (m)   | DEPTH (m) | DESCRIPTION<br>OF<br>STRATA                                   | GRAPHIC |      |            | MOISTURE | WEATH. | DEPTH (m) | M STRENGTH | RECOVERY<br>(%) | RQD     | 001 FRACTURE<br>875 SPACING | DEFECTS & | REMARKS | SAMPLE<br>REMARKS | түре | INTERVAL | DEPTH (m) | TEST TYPE | RESULTS<br>AND<br>REMARKS |
|             | -        | -         | CONGLOMERATE; grey; fine and<br>coarse (continued)            | P O     |      |            |          |        |           |            |                 |         |                             | i         |         |                   |      |          |           |           |                           |
|             |          | 41-       |                                                               |         |      |            |          |        |           |            |                 |         |                             |           |         |                   |      |          | - 41 -    |           |                           |
|             | - 99<br> | 42 -      |                                                               |         |      |            |          |        |           |            |                 |         |                             |           |         |                   |      |          | 42 -      |           |                           |
|             |          | 43 -      |                                                               |         |      |            |          |        |           |            |                 |         |                             |           |         |                   |      |          | - 43 -    |           |                           |
|             | 64       | 44 -      |                                                               |         |      |            |          |        |           |            |                 |         |                             |           |         |                   |      |          | 44 -      |           |                           |
|             | 63       | 45 -      |                                                               |         |      |            | 0        | SW-FF  | ł         | UK         |                 |         |                             |           |         |                   |      |          | - 45 -    |           |                           |
|             | 61 62    | 46        |                                                               |         |      |            |          |        |           |            |                 |         |                             |           |         |                   |      |          | - 46 -    |           |                           |
|             |          | 47 -      | 47.0-48.0m: Sandstone band ⊣                                  |         |      |            |          |        |           |            |                 |         |                             |           |         |                   |      |          | 47 -      |           |                           |
|             |          | 48 -      |                                                               |         |      |            |          |        |           |            |                 |         |                             |           |         |                   |      |          | 48 -      |           |                           |
|             | 58       | 49 -      |                                                               |         |      |            |          |        |           |            |                 |         |                             |           |         |                   |      |          | - 49 -    |           |                           |
| NOTE        |          | Soil orig | jin is "probable" unless otherwise stated. <sup>(*)</sup> Cor |         |      | density sh | nading   |        |           | opera      |                 | elation | between o                   | ohesive   | and gr  | anular mate       |      | implied  |           |           |                           |

PLANT: Hydrapower Scout Switched to Henjin DB8 from 140 m depth OPERATOR: CASING: HWT to 5.5m METHOD: AT to 5.5m, then WB to 157.3m **REMARKS:** Coordinates obtained using a differential GPS typically accurate to ±0.1 m.



#### **BOREHOLE LOG**

SURFACE LEVEL: 107.7 AHD COORDINATE E:378148.5 N: 6351797.7 PROJECT No: 210780.01 DATUM/GRID: MGA94 Zone 56 DIP/AZIMUTH: 90°/---

LOCATION ID: 1001 DATE: 09/05/22 - 17/05/22 SHEET: 6 of 16

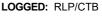
|   |         |           | CON                                                           |                   | NS I                  |          | ERED   | )         |                         | 000             |     |                    |                      | SA                | MPL  | E        |           |           | TESTING                  |
|---|---------|-----------|---------------------------------------------------------------|-------------------|-----------------------|----------|--------|-----------|-------------------------|-----------------|-----|--------------------|----------------------|-------------------|------|----------|-----------|-----------|--------------------------|
|   | KL (m)  | DEPTH (m) | DESCRIPTION<br>OF<br>STRATA                                   | GRAPHIC           | ORIGIN <sup>(#)</sup> | MOISTURE | WEATH. | DEPTH (m) | L<br>H<br>H<br>STRENGTH | RECOVERY 00 (%) | RQD | <sup>100</sup> (m) | DEFECTS &<br>REMARKS | SAMPLE<br>REMARKS | ТҮРЕ | INTERVAL | DEPTH (m) | TEST TYPE | RESULT:<br>AND<br>REMARK |
| - |         | -         | CONGLOMERATE; grey; fine and coarse (continued)               |                   |                       |          |        |           |                         |                 |     |                    |                      |                   |      |          |           |           |                          |
|   | 57      | 51 -      |                                                               |                   |                       |          |        |           |                         |                 |     |                    |                      |                   |      |          | - 51 -    |           |                          |
|   | 56      | 52        |                                                               | $   \frac{1}{2} $ |                       |          | SW-FF  | 2         | UK                      |                 |     |                    |                      |                   |      |          | - 52 -    |           |                          |
| - | 55      | 53 -      |                                                               | 200<br>200<br>200 |                       |          |        |           |                         |                 |     |                    |                      |                   |      |          | - 53 -    |           |                          |
|   |         | 54-       | , 54.5m: Drilling slowed —                                    |                   |                       |          |        |           |                         |                 |     |                    |                      |                   |      |          | - 54 -    |           |                          |
|   | 23      | 4.5 -     | COAL; black                                                   |                   |                       |          |        | -54.5-    |                         |                 |     |                    |                      |                   |      |          | - 55 -    |           |                          |
|   | 52      | 56 -      |                                                               |                   |                       |          | MW     |           | UK                      |                 |     |                    |                      |                   |      |          | - 56 -    |           |                          |
| - | 51      | 57        |                                                               |                   |                       |          |        |           |                         |                 |     |                    |                      |                   |      |          | - 57 -    |           |                          |
|   | 5<br>02 | 7.5 -     | CARBONACEOUS SILTSTONE;                                       | · _               |                       |          |        | -57.5-    |                         | -               |     |                    |                      |                   |      |          | <br>      |           |                          |
| - |         | 58 -      | dark grey                                                     |                   | -                     |          |        |           |                         |                 |     |                    |                      |                   |      |          | - 58 -    |           |                          |
|   | 49      | 59        |                                                               |                   | -                     |          | sw     |           | UK                      |                 |     |                    |                      |                   |      |          | - 59 -    |           |                          |
| - | 48      | -         | jin is "probable" unless otherwise stated. <sup>(*)</sup> Con | <br> <br>         |                       | <br>     |        |           |                         |                 |     |                    |                      |                   |      |          |           |           |                          |

PLANT: Hydrapower Scout Switched to Henjin DB8 from 140 m depth OPERATOR: CASING: HWT to 5.5m METHOD: AT to 5.5m, then WB to 157.3m **REMARKS:** Coordinates obtained using a differential GPS typically accurate to ±0.1 m.

LOGGED: RLP/CTB

**Douglas Partners** Geotechnics | Environment | Groundwater

### **BOREHOLE LOG**


SURFACE LEVEL: 107.7 AHD COORDINATE E:378148.5 N: 6351797.7 PROJECT No: 210780.01 DATUM/GRID: MGA94 Zone 56 DIP/AZIMUTH: 90°/---

LOCATION ID: 1001 DATE: 09/05/22 - 17/05/22 SHEET: 7 of 16

| - |        |           | СО                                                                | NDITIO                                | NS                    |         |          | EREC      | )            | -                  |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | SA                | MPLI      | =        |            |           | TESTING                   |
|---|--------|-----------|-------------------------------------------------------------------|---------------------------------------|-----------------------|---------|----------|-----------|--------------|--------------------|------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|-----------|----------|------------|-----------|---------------------------|
|   |        |           |                                                                   |                                       | <u> </u>              | SOIL    | -        |           |              | <br>               | ROCK | (<br>    | ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                   |           |          |            |           |                           |
|   | RL (m) | DEPTH (m) | DESCRIPTION<br>OF<br>STRATA                                       | GRAPHIC                               | ORIGIN <sup>(#)</sup> |         | MOISTURE | WEATH.    | DEPTH (m)    | H<br>H<br>STRENGTH |      | RQD      | 001 FRACTURE<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 SPACING<br>001 | REMARKS | SAMPLE<br>Remarks | ТҮРЕ      | INTERVAL | DEPTH (m)  | ΤΕST ΤΥΡΕ | RESULTS<br>AND<br>REMARKS |
| - |        |           | CARBONACEOUS SILTSTONE;<br>dark grey (continued)                  |                                       |                       |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| Ē |        |           |                                                                   | <u> </u>                              |                       |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| Ē | 47     | -         | -                                                                 | _ · -                                 |                       |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| ł | ч      |           |                                                                   |                                       | 1                     |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| ł |        | 61-       | ]                                                                 | · ·                                   | 1                     |         |          | SW        |              | UK                 |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          | - 61 -     |           |                           |
| F |        |           | -                                                                 | · _ ·                                 | 1                     |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| Ē |        |           | -                                                                 | · ·                                   | -                     |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| ł | 46     |           | -                                                                 | <u> </u>                              | 1                     |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| ł |        | 22.0      | -                                                                 | <u> </u>                              | 1                     |         |          |           | -62.0-       |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| ŀ |        | 62.0·     | LAMINITE; grey and dark grey                                      | ••••                                  |                       |         |          |           | 02.0         |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          | - 62 -     |           |                           |
| F |        |           | -                                                                 | · · · · · · · · · · · · · · · · · · · |                       |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| E | 45     | -         | -                                                                 |                                       |                       |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| ł | 4      |           | -                                                                 | ••••                                  | 1                     |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| ł |        | 63-       | ]                                                                 | · · · · · ·                           | ]                     |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          | - 63 -     |           |                           |
| F |        |           | -                                                                 | · · · · · · · · · · · · · · · · · · · | 1                     |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| Ē |        |           | -                                                                 |                                       | 1                     |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| ŀ | 44     |           | -                                                                 | ••••                                  | 1                     |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| ł |        | 64 -      |                                                                   | · · · · · ·                           | ]                     |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          | - 64 -     |           |                           |
| F |        | 04        | -                                                                 | · · · · · · · · · · · · · · · · · · · | 1                     |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| Ē |        |           | -                                                                 |                                       | 1                     |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| Ł | 43     | -         | -                                                                 | ••••                                  | 1                     |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| ł | •      |           |                                                                   | · · · · ·                             | ]                     |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| ł |        | 65        | -                                                                 | · · · · · · · · · · · · · · · · · · · | 1                     |         |          | SW        |              | UK                 |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          | - 65 -     |           |                           |
| - |        |           | -                                                                 |                                       | 1                     |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| ł |        |           |                                                                   | ••••••<br>•••••                       | -                     |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| F | 42     |           | -                                                                 | · · · · ·                             | ]                     |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| Ē |        | 66.       | -                                                                 | ••••                                  | 1                     |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          | <br>- 66 - |           |                           |
| - |        |           | -                                                                 |                                       |                       |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| ł |        |           | ]                                                                 | •••••                                 | -                     |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| F | 4      |           | -                                                                 |                                       | 1                     |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| Ē |        | ~=        | 1                                                                 | · · · · · ·                           |                       |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| ŀ |        | 67 ·      | ]                                                                 | · · · · · ·                           | ]                     |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          | - 67 -     |           |                           |
| ŀ |        |           | 4                                                                 |                                       |                       |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| Ē | 40     |           | 4                                                                 | · · · · · ·                           |                       |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| E | 4      |           | 1                                                                 |                                       |                       |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| ŀ | 6      | 68.0 ·    | TUFFACEOUS SILTSTONE; pale                                        |                                       |                       |         |          | <u> </u>  | -68.0-       |                    | -    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          | - 68 -     |           |                           |
| F |        |           | grey                                                              | · ·                                   |                       |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| Ē |        |           | 1                                                                 |                                       |                       |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| F | 39     |           | ]                                                                 |                                       | -                     |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| ŀ |        | 69        |                                                                   |                                       | 1                     |         |          | sw        |              | UK                 |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          | - 69 -     |           |                           |
| F |        | 03        | 1                                                                 | · _                                   |                       |         |          |           |              | Sir.               |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| Ē |        |           | -                                                                 | <u> </u>                              |                       |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| F | 38     |           | ]                                                                 |                                       | -                     |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| ŀ | 0      |           |                                                                   | . <u> </u>                            | 1                     |         |          |           |              |                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |           |          |            |           |                           |
| ŀ | (#)    | oil or    | ]<br>gin is "probable" unless otherwise stated. <sup>(*)</sup> Co | sistency/R                            | elative               | densitv | shading  | is for vi | <br>sual ref |                    |      | relation | between cohesive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | and ar  | anular mat        | erials is | implied  |            |           | L                         |

PLANT: Hydrapower Scout Switched to Henjin DB8 from 140 m depth OPERATOR: **METHOD:** AT to 5.5m, then WB to 157.3m CASING: HWT to 5.5m

**REMARKS:** Coordinates obtained using a differential GPS typically accurate to ±0.1 m.





CLIENT: Archadia Projects Pty Ltd LOCATION: 31-33 Smith Street, Charlestown

### **BOREHOLE LOG**

SURFACE LEVEL: 107.7 AHD COORDINATE E:378148.5 N: 6351797.7 PROJECT No: 210780.01 DATUM/GRID: MGA94 Zone 56 DIP/AZIMUTH: 90°/---

LOCATION ID: 1001 DATE: 09/05/22 - 17/05/22 SHEET: 8 of 16

|             | 1        |                     | CON                                                            | DITIO    | NS E    |         |          | ERED      | )         |                    |                 |         |                                                                              | SA                | MPL        | E        |           |           | TESTING                   |
|-------------|----------|---------------------|----------------------------------------------------------------|----------|---------|---------|----------|-----------|-----------|--------------------|-----------------|---------|------------------------------------------------------------------------------|-------------------|------------|----------|-----------|-----------|---------------------------|
| œ           |          |                     |                                                                |          |         | SOIL    | -        |           |           | F                  | OCK             |         | Ш                                                                            | -                 |            |          |           |           |                           |
| GROUNDWATER | RL (m)   | DEPTH (m)           | DESCRIPTION<br>OF<br>STRATA                                    | GRAPHIC  |         |         | MOISTURE | WEATH.    | DEPTH (m) | L<br>M<br>STRENGTH | RECOVERY<br>(%) | RQD     | 001 FRACTURE<br>008 SPACING<br>008 (m)<br>008 (m)<br>000 EFECTS &<br>REMARKS | SAMPLE<br>REMARKS | түре       | INTERVAL | DEPTH (m) | TEST TYPE | RESULTS<br>AND<br>REMARKS |
|             | -        |                     | TUFFACEOUS SILTSTONE; pale<br>grey (continued)                 | <u> </u> |         |         |          |           |           |                    |                 |         |                                                                              |                   |            |          | · ·       |           |                           |
|             | 37       | 71 -                |                                                                |          |         |         |          | sw        |           | ик                 |                 |         |                                                                              |                   |            |          | - 71 -    |           |                           |
|             | 36       | -<br>-<br>-<br>71.8 | COAL; black                                                    | · · ·    |         |         |          |           | -71.8-    |                    | -               |         |                                                                              |                   |            |          |           |           |                           |
|             | 35       | 72                  |                                                                |          |         |         |          | sw        |           | UK                 |                 |         |                                                                              |                   |            |          | - 72 -    |           |                           |
|             | F        |                     |                                                                |          |         |         |          |           |           |                    |                 |         |                                                                              |                   |            |          |           |           |                           |
|             | -        | 73.0-               | SANDSTONE; grey; fine to coarse                                |          |         |         |          |           | -73.0-    |                    |                 |         |                                                                              |                   |            |          | - 73 -    |           |                           |
|             | 34       | 74 -                |                                                                |          |         |         |          |           |           |                    |                 |         |                                                                              |                   |            |          | - 74 -    |           |                           |
|             | 33       | -                   |                                                                |          |         |         |          |           |           |                    |                 |         |                                                                              |                   |            |          |           |           |                           |
|             | -        | 75                  |                                                                |          |         |         |          |           |           |                    |                 |         |                                                                              |                   |            |          | - 75 -    |           |                           |
|             | 32       | 76                  |                                                                |          |         |         |          | sw        |           | ик                 |                 |         |                                                                              |                   |            |          | - 76 -    |           |                           |
|             | 31       | -                   |                                                                |          |         |         |          |           |           |                    |                 |         |                                                                              |                   |            |          |           |           |                           |
|             |          | 77 -                |                                                                |          |         |         |          |           |           |                    |                 |         |                                                                              |                   |            |          | - 77 -    |           |                           |
|             | 30       | 78-                 |                                                                |          |         |         |          |           |           |                    |                 |         |                                                                              |                   |            |          | - 78 -    |           |                           |
|             | 29       | -                   |                                                                |          |         |         |          |           |           |                    |                 |         |                                                                              |                   |            |          |           |           |                           |
|             |          | 79.0 -              | CONGLOMERATE; grey                                             |          |         |         |          | sw        | -79.0-    | ик                 |                 |         |                                                                              |                   |            |          | - 79 -    |           |                           |
| NOTES       | - 58<br> | -                   | jin is "probable" unless otherwise stated. <sup>(*)</sup> Cons |          | elative | density | shading  | is for vi | sual ref  | erence only        | - no corr       | elation | <br>          <br>between cohesive and                                       | granular mat      | terials is | implied  |           |           |                           |

PLANT: Hydrapower Scout Switched to Henjin DB8 from 140 m depth OPERATOR: METHOD: AT to 5.5m, then WB to 157.3m CASING: HWT to 5.5m **REMARKS:** Coordinates obtained using a differential GPS typically accurate to ±0.1 m.

LOGGED: RLP/CTB



PROJECT: Proposed Medical Facility

### **BOREHOLE LOG**

SURFACE LEVEL: 107.7 AHD COORDINATE E:378148.5 N: 6351797.7 PROJECT No: 210780.01 DATUM/GRID: MGA94 Zone 56 DIP/AZIMUTH: 90°/---

LOCATION ID: 1001 DATE: 09/05/22 - 17/05/22 SHEET: 9 of 16

|                                       |        |                    |               |                                   | CON                      |                                                               | NS E    | NCO       | JNTE     | RED       | )         |             |                 |         |                                                        |                      | SA                | MPL       | E        |           |           | TESTING                   |
|---------------------------------------|--------|--------------------|---------------|-----------------------------------|--------------------------|---------------------------------------------------------------|---------|-----------|----------|-----------|-----------|-------------|-----------------|---------|--------------------------------------------------------|----------------------|-------------------|-----------|----------|-----------|-----------|---------------------------|
|                                       |        |                    |               |                                   |                          |                                                               |         | SOIL      |          |           |           | F           | ROCK            |         |                                                        | 1                    |                   |           |          |           |           |                           |
| GROUNDWATER                           | RL (m) |                    | DEPIH (m)     | DESCRIPTION<br>OF<br>STRATA       |                          | GRAPHIC                                                       |         |           | MOISTURE | WEATH.    | DEPTH (m) | M STRENGTH  | RECOVERY<br>(%) | RQD     | 001 FRACTURE<br>005 PRACTURE<br>005 SPACING<br>005 (m) | DEFECTS &<br>REMARKS | SAMPLE<br>REMARKS | TYPE      | INTERVAL | DEPTH (m) | TEST TYPE | RESULTS<br>AND<br>REMARKS |
|                                       | -      |                    | cc            | NGLOMERATE; grey (conti           | nued)                    |                                                               |         |           |          |           |           |             |                 |         |                                                        |                      |                   |           |          |           |           |                           |
|                                       | -      |                    | -             |                                   |                          | )00                                                           |         |           |          |           |           |             |                 |         |                                                        |                      |                   |           |          |           |           |                           |
|                                       | 10     | ī                  | ]             |                                   |                          | O'                                                            |         |           |          |           |           |             |                 |         |                                                        |                      |                   |           |          |           |           |                           |
|                                       | -      | 8                  | 1-            |                                   | 6                        | 10C                                                           |         |           |          |           |           |             |                 |         |                                                        |                      |                   |           |          | - 81 -    |           |                           |
|                                       | -      |                    |               |                                   |                          | $) \circ \subset $                                            |         |           |          |           |           |             |                 |         |                                                        |                      |                   |           |          |           |           |                           |
|                                       | -96    | 2                  | -             |                                   | þ                        |                                                               |         |           |          |           |           |             |                 |         |                                                        |                      |                   |           |          | · ·       |           |                           |
|                                       | -      | 8                  | 2             |                                   |                          | $) \circ \subset $                                            |         |           |          |           |           |             |                 |         |                                                        |                      |                   |           |          | - 82 -    |           |                           |
|                                       |        |                    | -             |                                   | ŕ                        | 0                                                             |         |           |          |           |           |             |                 |         |                                                        |                      |                   |           |          |           |           |                           |
|                                       | 25     | 2                  |               |                                   | 6                        |                                                               |         |           |          |           |           |             |                 |         |                                                        |                      |                   |           |          |           |           |                           |
|                                       | -      | 8                  | 3             |                                   |                          | $) \sim ($                                                    |         |           |          |           |           |             |                 |         |                                                        |                      |                   |           |          | - 83 -    |           |                           |
|                                       | Ē      |                    | -             |                                   |                          | $\left  \begin{array}{c} \\ \\ \\ \\ \end{array} \right _{O}$ |         |           |          |           |           |             |                 |         |                                                        |                      |                   |           |          | · ·       |           |                           |
|                                       | 24     | 1                  | -             |                                   |                          |                                                               |         |           |          |           |           |             |                 |         |                                                        |                      |                   |           |          |           |           |                           |
|                                       | -      | 8                  | 4             |                                   |                          | )00                                                           |         |           |          |           |           |             |                 |         |                                                        |                      |                   |           |          | - 84 -    |           |                           |
|                                       | -      |                    |               |                                   |                          | O                                                             |         |           |          |           |           |             |                 |         |                                                        |                      |                   |           |          |           |           |                           |
|                                       | -2     | 2                  | -             |                                   |                          |                                                               |         |           |          |           |           |             |                 |         |                                                        |                      |                   |           |          |           |           |                           |
|                                       |        | 8                  | 5             |                                   |                          | $) \circ C$                                                   |         |           |          | SW        |           | UK          |                 |         |                                                        |                      |                   |           |          | - 85 -    |           |                           |
|                                       | -      |                    | -             |                                   |                          |                                                               |         |           |          |           |           |             |                 |         |                                                        |                      |                   |           |          | - ·       |           |                           |
|                                       | -6     | 1                  | -             |                                   |                          | 100                                                           |         |           |          |           |           |             |                 |         |                                                        |                      |                   |           |          |           |           |                           |
|                                       | -      | 8                  | 6             |                                   |                          | $) \circ \subset $                                            |         |           |          |           |           |             |                 |         |                                                        |                      |                   |           |          | - 86 -    |           |                           |
|                                       | -      |                    | -             |                                   | 6                        |                                                               |         |           |          |           |           |             |                 |         |                                                        |                      |                   |           |          |           |           |                           |
|                                       | - 12   | -                  | -             |                                   |                          | $) \sim ($                                                    |         |           |          |           |           |             |                 |         |                                                        |                      |                   |           |          | <br>      |           |                           |
| ABINED                                | -      | 8                  | 7             |                                   | Ĺ                        | )00                                                           |         |           |          |           |           |             |                 |         |                                                        |                      |                   |           |          | - 87 -    |           |                           |
| DP_103.02.00_COMBINED                 | -      | 0                  | ′ -           |                                   | 6                        |                                                               |         |           |          |           |           |             |                 |         |                                                        |                      |                   |           |          |           |           |                           |
| 103.02                                | - 00   | <b>b</b>           | -             |                                   |                          | $) \sim ($                                                    |         |           |          |           |           |             |                 |         |                                                        |                      |                   |           |          | <br>      |           |                           |
|                                       |        |                    |               |                                   | ŕ                        | ) 0                                                           |         |           |          |           |           |             |                 |         |                                                        |                      |                   |           |          |           |           |                           |
| ID:                                   | -      | 8                  | ŏ             |                                   | $\hat{c}$                |                                                               |         |           |          |           |           |             |                 |         |                                                        |                      |                   |           |          | - 88 -    |           |                           |
| TEMPLA                                |        | ,<br>,             |               |                                   |                          | $) \circ \subset $                                            |         |           |          |           |           |             |                 |         |                                                        |                      |                   |           |          |           |           |                           |
| 7:41.                                 | -01    |                    | -             |                                   |                          | $\bigcup_{i=1}^{n}$                                           |         |           |          |           |           |             |                 |         |                                                        |                      |                   |           |          |           |           |                           |
| 5/22 1                                | -      | 8                  | 9-            |                                   |                          | $\mathcal{F}_{\mathcal{O}}$                                   |         |           |          |           |           |             |                 |         |                                                        |                      |                   |           |          | - 89 -    |           |                           |
| 0 20/0                                | ŀ      |                    | -             |                                   |                          | $) \circ C$                                                   |         |           |          |           |           |             |                 |         |                                                        |                      |                   |           |          |           |           |                           |
| EXPORTED 20/05/22 17:41. TEMPLATE ID: | -4     | 2                  |               |                                   |                          |                                                               |         |           |          |           |           |             |                 |         |                                                        |                      |                   |           |          |           |           |                           |
|                                       | ES: (# | <sup>i)</sup> Soil | <br>origin is | "probable" unless otherwise state | d. <sup>(*)</sup> Consis | JU/<br>stency/Re                                              | elative | density s | hading   | is for vi | sual ref  | erence only | - no corr       | elation | between coh                                            | esive and g          | ıranular mat      | erials is | implied  | L         |           |                           |

PLANT: Hydrapower Scout Switched to Henjin DB8 from 140 m depth OPERATOR: CASING: HWT to 5.5m METHOD: AT to 5.5m, then WB to 157.3m **REMARKS:** Coordinates obtained using a differential GPS typically accurate to ±0.1 m.



### **BOREHOLE LOG**

SURFACE LEVEL: 107.7 AHD COORDINATE E:378148.5 N: 6351797.7 PROJECT No: 210780.01 DATUM/GRID: MGA94 Zone 56 DIP/AZIMUTH: 90°/---

LOCATION ID: 1001 DATE: 09/05/22 - 17/05/22 SHEET: 10 of 16

| TESTING                             |             | Ξ        | MPLI      | SA                |                      |                 |     |         | _        |                         |           | RED       | UNTE     |         |         | DITIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CON                               |               |                                                   |
|-------------------------------------|-------------|----------|-----------|-------------------|----------------------|-----------------|-----|---------|----------|-------------------------|-----------|-----------|----------|---------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------|---------------------------------------------------|
|                                     |             |          |           |                   |                      |                 | 117 | :<br>   | OCK      |                         |           |           |          | SOIL    |         | ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |               | ~                                                 |
| (m) HI IS I RESULT<br>AND<br>REMARK | DEPTH (m)   | INTERVAL | түре      | SAMPLE<br>Remarks | DEFECTS &<br>REMARKS | (m)<br>5.00 (m) |     | RQD     | RECOVERY | M<br>M<br>H<br>EH<br>EH | DEPTH (m) | WEATH.    | MOISTURE |         |         | GRAPHIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DESCRIPTION<br>OF<br>STRATA       | DEPTH (m)     | <b>GROUNDWATER</b>                                |
|                                     |             |          |           |                   |                      | 11 1            |     |         |          |                         | _         |           |          |         |         | Ĩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NGLOMERATE; grey (continued)      |               | F                                                 |
| 91                                  |             |          |           |                   |                      |                 |     |         |          | UK                      |           | sw        |          |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | 91 -          |                                                   |
| - 92 -                              | - 92 -      |          |           |                   |                      |                 |     |         |          |                         | -92.0-    |           |          |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NDSTONE; grey; fine to medium     | 92.0-         | ÷                                                 |
| 93                                  | - 93 -      |          |           |                   |                      |                 |     |         |          | UK                      |           | SW        |          |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | 93 -          |                                                   |
|                                     |             |          |           |                   |                      |                 |     |         |          |                         |           |           |          |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | -             | E                                                 |
| 94 -                                | 94          |          |           |                   |                      |                 |     |         |          |                         | -94.0-    |           |          |         |         | · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FREEOUS LAMINITE, pale grey       | 94.0-         |                                                   |
| 95                                  | 95 -        |          |           |                   |                      |                 |     |         |          |                         |           |           |          |         |         | ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         · |                                   | 95 -          |                                                   |
| 96                                  | - 96 -      |          |           |                   |                      |                 |     |         |          |                         |           |           |          |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | 96 -          |                                                   |
| 97                                  | 97          |          |           |                   |                      |                 |     |         |          | UK                      |           | SW        |          |         |         | ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         · |                                   | 97 -          | ing 📩                                             |
| - 98 -                              | - 98 -      |          |           |                   |                      |                 |     |         |          |                         |           |           |          |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | 98 -          | Approximate from camera only following drilling 🕅 |
| 99 -                                | - 99 -      |          |           |                   |                      |                 |     |         |          |                         |           |           |          |         |         | ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         ·           ·         ·         ·         ·         · | 99.0m: Possible siderite banding— | 99 -          | F                                                 |
|                                     | , ]<br> - · |          |           |                   |                      |                 |     |         |          |                         |           |           |          |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | ]             | - 1                                               |
|                                     |             | implie   | ariole in | ranular           | sive or -            | 11.1            |     | Platier |          |                         | uol rof   | ie for :: | hadier   | density | alativ- |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | -<br>Soil cri |                                                   |
| GED: RLP/CTB                        |             |          |           | ranular mat       | sive and g           | 11.1            |     |         |          |                         |           |           |          |         |         | stency/Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |               |                                                   |

**METHOD:** AT to 5.5m, then WB to 157.3m CASING: HWT to 5.5m **REMARKS:** Coordinates obtained using a differential GPS typically accurate to ±0.1 m.



### **BOREHOLE LOG**

SURFACE LEVEL: 107.7 AHD COORDINATE E:378148.5 N: 6351797.7 PROJECT No: 210780.01 DATUM/GRID: MGA94 Zone 56 DIP/AZIMUTH: 90°/---

LOCATION ID: 1001 DATE: 09/05/22 - 17/05/22 SHEET: 11 of 16

|                       |                     | CO                                                            | NDITIO                  | NS E                       |                        | UNTE     | ERED      | )         |                    |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SA                | MPL        | E        |           |           | TESTING                   |
|-----------------------|---------------------|---------------------------------------------------------------|-------------------------|----------------------------|------------------------|----------|-----------|-----------|--------------------|-----------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------|----------|-----------|-----------|---------------------------|
|                       |                     |                                                               |                         |                            | SOIL                   |          |           |           | F                  | OCK             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |            |          | 1         |           |                           |
| GROUNDWATER           | RL (m)<br>DEPTH (m) | DESCRIPTION<br>OF<br>STRATA                                   | GRAPHIC                 | ORIGIN <sup>(#)</sup>      | CONSIS. <sup>(1)</sup> | MOISTURE | WEATH.    | DEPTH (m) | L<br>M<br>STRENGTH | RECOVERY<br>(%) | RQD      | 001 FRACTURE<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 SPACING<br>008 | SAMPLE<br>REMARKS | түре       | INTERVAL | DEPTH (m) | TEST TYPE | RESULTS<br>AND<br>REMARKS |
|                       | -                   | TUFFACEOUS LAMINITE; pale grey (continued)                    | · · · · · ·             |                            |                        |          |           |           |                    |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |            |          |           |           |                           |
|                       | - <b>-</b> 101      | 101.0m: High percentage of-<br>cutting passing through sieve  |                         | -                          |                        |          | sw        |           | UK                 |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |            |          | - 101 -   |           |                           |
|                       | 102<br>- ເດ         |                                                               |                         |                            |                        |          |           | -103.0-   |                    | -               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |            |          | - 102 -   |           |                           |
|                       | <del></del>         | sitstone                                                      |                         | -                          |                        |          |           |           |                    |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |            |          | - 104 -   |           |                           |
|                       |                     |                                                               |                         |                            |                        |          |           |           |                    |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |            |          | - 105 -   |           |                           |
|                       | <b>~</b><br>106     |                                                               |                         | -                          |                        |          |           |           |                    |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |            |          | - 106 -   |           |                           |
| . 02. 00_CUNDINE      | 107                 |                                                               |                         | -<br>-<br>-<br>-<br>-<br>- |                        |          | SW        |           | UK                 |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |            |          | - 107 -   |           |                           |
|                       | -0                  |                                                               |                         | -                          |                        |          |           |           |                    |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |            |          | - 108 -   |           |                           |
| 101 .14:11 22 /cg /gz |                     |                                                               |                         |                            |                        |          |           |           |                    |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |            |          | - 109 -   |           |                           |
| NOTE                  |                     | igin is "probable" unless otherwise stated. <sup>17</sup> Cor | <br><br><br>nsistency/R | elative                    | density s              | hading   | is for vi | sual ref  | erence only        | - no corr       | relation | <br>          <br>          <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | granular mat      | terials is | implied  |           |           |                           |

PLANT: Hydrapower Scout Switched to Henjin DB8 from 140 m depth OPERATOR: CASING: HWT to 5.5m METHOD: AT to 5.5m, then WB to 157.3m **REMARKS:** Coordinates obtained using a differential GPS typically accurate to ±0.1 m.





### **BOREHOLE LOG**

SURFACE LEVEL: 107.7 AHD COORDINATE E:378148.5 N: 6351797.7 PROJECT No: 210780.01 DATUM/GRID: MGA94 Zone 56 DIP/AZIMUTH: 90°/---

LOCATION ID: 1001 DATE: 09/05/22 - 17/05/22 SHEET: 12 of 16

| Image: Section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of th |             |                |                  | CON                                                | IDITIO        | NS E                  | ENCOL      | INTER    | RED    | )         |                    |                 |          |           |                      | SA                | MPL       | E        |             |           | TESTING                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|------------------|----------------------------------------------------|---------------|-----------------------|------------|----------|--------|-----------|--------------------|-----------------|----------|-----------|----------------------|-------------------|-----------|----------|-------------|-----------|---------------------------|
| CARBONACEUS SUITSTONE:<br>grave in interous duffaceus<br>sistore (continued)<br>111<br>111<br>111<br>111<br>112<br>112<br>112<br>112<br>112<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                |                  |                                                    |               |                       | SOIL       |          |        |           | F                  | ROCK            |          |           |                      |                   |           |          | ]           |           |                           |
| CARBONACEOUS SILTSTONE:<br>pattore (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GROUNDWATER | RL (m)         | DEPTH (m)        | OF<br>STRATA                                       | GRAPHIC       | ORIGIN <sup>(#)</sup> |            | MOISTURE | WEATH. | DEPTH (m) | M<br>M<br>STRENGTH | RECOVERY<br>(%) | RQD      | FRACTURE  | DEFECTS &<br>REMARKS | SAMPLE<br>REMARKS | түре      | INTERVAL | DEPTH (m)   | ΤΕST ΤΥΡΕ | RESULTS<br>AND<br>REMARKS |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | È              | -                | CARBONACEOUS SILTSTONE:                            |               |                       |            |          |        |           |                    |                 |          | 1 1 11 11 | 1                    |                   |           |          |             |           |                           |
| **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | Ē              | -                | siltstone (continued)                              | <u> </u>      |                       |            |          |        |           |                    |                 |          |           | 1                    |                   |           |          |             |           |                           |
| •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | -ņ             |                  |                                                    | <u> </u>      |                       |            |          |        |           |                    |                 |          |           |                      |                   |           |          |             |           |                           |
| •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | Ē              |                  |                                                    |               |                       |            |          |        |           |                    |                 |          |           | 1                    |                   |           |          |             |           |                           |
| •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | Ł              | 111-             |                                                    | <u> </u>      | -                     |            |          |        |           |                    |                 |          |           | i                    |                   |           |          | - 111 -     |           |                           |
| 112        111       112        111          111     1112          111     111       113       111     1113          1111     1113          1111     1113          1111     1113          1111     1113          1111     1113          1111     1113          1111     1113          1111     1114          1111     1114          1111     1114          1111     1114          1111     1114          1111     1114        <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | ŀ              | -                | -                                                  |               |                       |            |          |        |           |                    |                 |          |           |                      |                   |           |          |             |           |                           |
| 112-       112-         113-       113-         114-       113-         114-       113-         114-       113-         114-       114-         114-       114-         114-       114-         114-       114-         114-       114-         114-       114-         114-       114-         114-       114-         114-       114-         114-       114-         114-       114-         114-       114-         115-       115-         116-       116-         116-       116-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | 4              | -                |                                                    | · · _         | 1                     |            |          |        |           |                    |                 |          |           | i                    |                   |           |          |             |           |                           |
| 112       112       111         113       113         113       111         114       111         114       111         114       111         114       111         115       111         116       111         1116       111         116       111         116       111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | ; '            |                  |                                                    | · · ·         |                       |            |          |        |           |                    |                 |          |           |                      |                   |           |          |             |           |                           |
| 113           113           113           114                114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | È              | 112-             |                                                    | · · ·         |                       |            |          |        |           |                    |                 |          |           | i                    |                   |           |          | - 112 -     |           |                           |
| φ          113                                                           114-              114-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | -              |                  |                                                    | · · ·         |                       |            |          |        |           |                    |                 |          |           |                      |                   |           |          |             |           |                           |
| 113     113     111     111     113       q     114     114     114     114       114     114     114     114       115     115     114     114       116     116     116     116       116     116     116     116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | +              | -                |                                                    | <br>          |                       |            |          |        |           |                    |                 |          |           |                      |                   |           |          |             |           |                           |
| 114-                114-                      115-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | ĽΨ             | -                | -                                                  | · · ·         |                       |            |          |        |           |                    |                 |          |           |                      |                   |           |          |             |           |                           |
| φ<br>φ<br>114<br>114<br>115<br>φ<br>115<br>φ<br>116<br>116<br>φ<br>116<br>116<br>116<br>116<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | ŀ              | 113 -            |                                                    | · · ·         | -                     |            |          |        |           |                    |                 |          |           |                      |                   |           |          | - 113 -     |           |                           |
| φ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | F              |                  |                                                    |               |                       |            |          |        |           |                    |                 |          |           |                      |                   |           |          |             |           |                           |
| -49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                | -                |                                                    | ·             | 1                     |            |          |        |           |                    |                 |          |           |                      |                   |           |          |             |           |                           |
| 114     114     114     114       115     115     111     1111       115     115     111     1111       116     111     1111       116     111     1111       116     111     1111       111     1111     116       116     111     1111       111     1111     116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | -9<br>-        | -                |                                                    | <u> </u>      |                       |            |          |        |           |                    |                 |          |           | 1                    |                   |           |          |             |           |                           |
| 115     SW     UK     1111       115      SW     UK       116         116         116         116         116         116         111        111        111        111        111        111        111        111        111        111        111        111        111        111        1110        1110        1110        1110        1110        1110        1110        1110        1110        1110        1110        1111        1111        1111        1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | Ē              | 114 <del>-</del> |                                                    | <u> </u>      |                       |            |          |        |           |                    |                 |          |           |                      |                   |           |          | <br>- 114 - |           |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | -              |                  |                                                    | <u> </u>      |                       |            |          |        |           |                    |                 |          |           |                      |                   |           |          |             |           |                           |
| 115      SW     UK                           SW     UK                                                                                                                                                                                                                                                           -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | ŀ              | -                | -                                                  | <u> </u>      |                       |            |          |        |           |                    |                 |          |           |                      |                   |           |          |             |           |                           |
| 115      SW     UK     11111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | -1-            |                  |                                                    | ·<br>  · · .  |                       |            |          |        |           |                    |                 |          |           |                      |                   |           |          |             |           |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | ŀ              | 115 -            |                                                    | <u> </u>      |                       |            |          | sw     |           | uĸ                 |                 |          |           |                      |                   |           |          | - 115 -     |           |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | F              |                  |                                                    |               |                       |            |          |        |           |                    |                 |          |           |                      |                   |           |          |             |           |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | ŀ              | -                |                                                    | · _           |                       |            |          |        |           |                    |                 |          |           | 1                    |                   |           |          |             |           |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | -φ             |                  |                                                    |               |                       |            |          |        |           |                    |                 |          |           |                      |                   |           |          |             |           |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | -              | 116              |                                                    |               |                       |            |          |        |           |                    |                 |          |           |                      |                   |           |          | 116         |           |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | F              | - 110            |                                                    | · · _         | -                     |            |          |        |           |                    |                 |          |           | 1                    |                   |           |          |             |           |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                |                  |                                                    | · · _         |                       |            |          |        |           |                    |                 |          |           |                      |                   |           |          |             |           |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | ြုှ            | -                |                                                    | · · ·         |                       |            |          |        |           |                    |                 |          |           | 1                    |                   |           |          |             |           |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BINE        | Ē              |                  |                                                    | <br>          |                       |            |          |        |           |                    |                 |          |           |                      |                   |           |          |             |           |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5           | Ļ              | 117-             |                                                    | <br>          |                       |            |          |        |           |                    |                 |          |           |                      |                   |           |          | - 117 -     |           |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 37.96       | F              |                  |                                                    | · · ·         |                       |            |          |        |           |                    |                 |          |           |                      |                   |           |          |             |           |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T03.        | - <del>6</del> | -                |                                                    | · · ·         |                       |            |          |        |           |                    |                 |          |           |                      |                   |           |          |             |           |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ₹           | ÷'             |                  |                                                    | · ·           |                       |            |          |        |           |                    |                 |          |           | 1                    |                   |           |          |             |           |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | Ē              | 118-             |                                                    |               |                       |            |          |        |           |                    |                 |          |           |                      |                   |           |          | - 118 -     |           |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LAIE        | ŧ              | -                | -                                                  | <u> </u>      | 1                     |            |          |        |           |                    |                 |          |           | 1                    |                   |           |          |             |           |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E H         | -<br>-         | -                | -                                                  |               | 1                     |            |          |        |           |                    |                 |          |           |                      |                   |           |          |             |           |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | :41.        | [              |                  |                                                    | <u></u> · · - |                       |            |          |        |           |                    |                 |          |           | 1                    |                   |           |          |             |           |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11 7        | ŀ              | 119 -            |                                                    | <u> </u>      |                       |            |          |        |           |                    |                 |          |           | 1                    |                   |           |          | - 119 -     |           |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7/CA/       | Ē              |                  | -                                                  | <u> </u>      |                       |            |          |        |           |                    |                 |          |           |                      |                   |           |          |             |           |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D 78        | -<br>-         | -                |                                                    | <u></u> · · - |                       |            |          |        |           |                    |                 |          |           | 1                    |                   |           |          |             |           |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OKIE        | Ę,             |                  | -                                                  |               |                       |            |          |        |           |                    |                 |          |           |                      |                   |           |          |             |           |                           |
| NOTES: <sup>(III</sup> Soil origin is "probable" unless otherwise stated. <sup>(III</sup> Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | S: (#)         | -<br>Soil orig   | gin is "probable" unless otherwise stated. (")Cons | ·             | elative               | density sh | ading is | for vi | sual refe | erence only        | - no cor        | relation |           | 1                    | l granular mat    | erials is | implied  | [           |           |                           |

PLANT: Hydrapower Scout Switched to Henjin DB8 from 140 m depth OPERATOR: METHOD: AT to 5.5m, then WB to 157.3m CASING: HWT to 5.5m **REMARKS:** Coordinates obtained using a differential GPS typically accurate to ±0.1 m.

LOGGED: RLP/CTB

Refer to explanatory notes for symbol and abbreviation definitions



### **BOREHOLE LOG**

SURFACE LEVEL: 107.7 AHD COORDINATE E:378148.5 N: 6351797.7 PROJECT No: 210780.01 DATUM/GRID: MGA94 Zone 56 DIP/AZIMUTH: 90°/---

LOCATION ID: 1001 DATE: 09/05/22 - 17/05/22 SHEET: 13 of 16

| Π  |                                  | COI                                                           | NDITIO     | INS E                 | SOIL            |          | EREC      | J         | F           | ROCH    | <b>‹</b>  |        |        |                      | SA                | MPLI      | E<br>    |           |           | TESTING                 |
|----|----------------------------------|---------------------------------------------------------------|------------|-----------------------|-----------------|----------|-----------|-----------|-------------|---------|-----------|--------|--------|----------------------|-------------------|-----------|----------|-----------|-----------|-------------------------|
|    | DEPTH (m)                        | DESCRIPTION<br>OF<br>STRATA                                   | GRAPHIC    | ORIGIN <sup>(#)</sup> | S. <sup>3</sup> | MOISTURE | WEATH.    | DEPTH (m) | M STRENGTH  |         |           |        | (m)    | DEFECTS &<br>REMARKS | SAMPLE<br>REMARKS | түре      | INTERVAL | DEPTH (m) | TEST TYPE | RESULT<br>AND<br>REMARK |
|    | - 120.0                          | COAL; black                                                   |            |                       |                 |          |           | 420.0     |             |         |           |        |        |                      |                   |           |          | · ·       |           |                         |
|    |                                  |                                                               |            |                       |                 |          |           |           |             |         |           |        |        |                      |                   |           |          |           |           |                         |
|    |                                  |                                                               |            |                       |                 |          |           |           |             |         |           |        |        |                      |                   |           |          |           |           |                         |
|    | 121                              |                                                               |            |                       |                 |          |           |           |             |         |           |        |        |                      |                   |           |          | - 121 -   |           |                         |
|    |                                  |                                                               |            |                       |                 |          |           |           |             |         |           | li ii  | iii    |                      |                   |           |          |           |           |                         |
| -  | 4                                |                                                               |            |                       |                 |          | SW        |           | UK          |         |           | liü    |        |                      |                   |           |          |           |           |                         |
| -  | 122 -                            |                                                               |            |                       |                 |          |           |           |             |         |           | li ii  | ii i   |                      |                   |           |          | - 122 -   |           |                         |
|    |                                  |                                                               |            |                       |                 |          |           |           |             |         |           |        |        |                      |                   |           |          |           |           |                         |
|    | -                                |                                                               |            |                       |                 |          |           |           |             |         |           |        |        |                      |                   |           |          |           |           |                         |
|    | -15                              |                                                               |            |                       |                 |          |           |           |             |         |           |        |        |                      |                   |           |          |           |           |                         |
|    | 123.0-                           | TUFFACEOUS SILTSTONE; pale                                    | · · _      |                       |                 |          | <u> </u>  | 123.0     |             | 1       |           |        |        |                      |                   |           |          | - 123 -   |           |                         |
|    |                                  | grey                                                          | · ·        | -                     |                 |          |           |           |             |         |           |        |        |                      |                   |           |          |           |           |                         |
|    | -16                              |                                                               |            | -                     |                 |          |           |           |             |         |           |        |        |                      |                   |           |          |           |           |                         |
|    | 124 -                            |                                                               | · _ ·      | -                     |                 |          |           |           |             |         |           |        |        |                      |                   |           |          | - 124 -   |           |                         |
|    |                                  |                                                               |            |                       |                 |          | sw        |           | ик          |         |           |        |        |                      |                   |           |          |           |           |                         |
| -  | ~                                |                                                               | · ·        |                       |                 |          |           |           |             |         |           | li ii  |        |                      |                   |           |          |           |           |                         |
|    | -17                              |                                                               | · ·        |                       |                 |          |           |           |             |         |           | li ii  |        |                      |                   |           |          | · ·       |           |                         |
|    | 125                              |                                                               |            |                       |                 |          |           |           |             |         |           | liΪ    | ii i   |                      |                   |           |          | - 125 -   |           |                         |
| -  | 125.5 -                          |                                                               |            |                       |                 |          |           | 125.5     |             |         |           | liü    | ii i   |                      |                   |           |          |           |           |                         |
|    |                                  | COAL; black                                                   |            |                       |                 |          |           |           |             |         |           | li ii  | iii    |                      |                   |           |          | · ·       |           |                         |
| -  | 126 -                            |                                                               |            |                       |                 |          |           |           |             |         |           |        |        |                      |                   |           |          | - 126 -   |           |                         |
| -  |                                  |                                                               |            |                       |                 |          |           |           |             |         |           |        |        |                      |                   |           |          |           |           |                         |
|    | - 19                             |                                                               |            |                       |                 |          |           |           |             |         |           |        |        |                      |                   |           |          |           |           |                         |
| -  | -                                |                                                               |            |                       |                 |          |           |           |             |         |           |        |        |                      |                   |           |          | 107       |           |                         |
|    | 127 -                            |                                                               |            |                       |                 |          |           |           |             |         |           |        |        |                      |                   |           |          | - 127 -   |           |                         |
|    |                                  |                                                               |            |                       |                 |          |           |           |             |         |           |        |        |                      |                   |           |          |           |           |                         |
|    | -20                              |                                                               |            |                       |                 |          | мw        |           | uк          |         |           |        |        |                      |                   |           |          |           |           |                         |
|    | 128                              |                                                               |            |                       |                 |          |           |           |             |         |           |        |        |                      |                   |           |          | - 128 -   |           |                         |
|    |                                  |                                                               |            |                       |                 |          |           |           |             |         |           |        |        |                      |                   |           |          |           |           |                         |
|    | -51                              |                                                               |            |                       |                 |          |           |           |             |         |           |        |        |                      |                   |           |          |           |           |                         |
|    | 129 -                            |                                                               |            |                       |                 |          |           |           |             |         |           | 1.11   |        |                      |                   |           |          | - 129 -   |           |                         |
|    |                                  | -                                                             |            |                       |                 |          |           |           |             |         |           |        |        |                      |                   |           |          |           |           |                         |
|    | -                                |                                                               |            |                       |                 |          |           |           |             |         |           |        |        |                      |                   |           |          |           |           |                         |
|    | -52                              |                                                               |            |                       |                 |          |           |           |             |         |           |        |        |                      |                   |           |          |           |           |                         |
| ES | -<br>S: <sup>(#)</sup> Soil orig | gin is "probable" unless otherwise stated. <sup>(*)</sup> Cor | sistency/R | elative               | density s       | shading  | is for vi | sual ref  | erence only | - no co | rrelation | betwee | en coh | nesive and g         | granular mat      | erials is | implied  |           |           |                         |

METHOD: AT to 5.5m, then WB to 157.3m CASING: HWT to 5.5m **REMARKS:** Coordinates obtained using a differential GPS typically accurate to ±0.1 m.



### **BOREHOLE LOG**

SURFACE LEVEL: 107.7 AHD COORDINATE E:378148.5 N: 6351797.7 PROJECT No: 210780.01 DATUM/GRID: MGA94 Zone 56 DIP/AZIMUTH: 90°/---

LOCATION ID: 1001 DATE: 09/05/22 - 17/05/22 **SHEET:** 14 of 16

|   |                 |                  | CO                              | NDITIO                                | NS I                  |        |        | כ         |                    | ROCK |       |                  |                      | SA                | MPL  | E        |           |           | TESTING                 |
|---|-----------------|------------------|---------------------------------|---------------------------------------|-----------------------|--------|--------|-----------|--------------------|------|-------|------------------|----------------------|-------------------|------|----------|-----------|-----------|-------------------------|
|   | RL (m)          |                  | DESCRIPTION<br>OF<br>STRATA     | GRAPHIC                               | ORIGIN <sup>(#)</sup> |        | WEATH. | DEPTH (m) | M<br>M<br>STRENGTH |      |       | 100 ( <b>m</b> ) | DEFECTS &<br>REMARKS | SAMPLE<br>REMARKS | түре | INTERVAL | DEPTH (m) | TEST TYPE | RESULT<br>AND<br>REMARK |
| Ē | -               | - (              | COAL; black (continued)         |                                       |                       |        | MW     |           | UK                 |      |       |                  |                      |                   |      |          | -         | -         |                         |
| ł | 130.5           | 5-1.             |                                 |                                       |                       |        |        | 130.5     |                    |      |       |                  |                      |                   |      |          |           |           |                         |
| F | -23             | +                | TUFFACEOUS SILTSTONE; pale grey |                                       | 1                     |        |        |           |                    |      | li ii |                  |                      |                   |      |          |           |           |                         |
| ł | 13 <sup>-</sup> | 1                |                                 |                                       | 1                     |        |        |           |                    |      |       |                  |                      |                   |      |          | - 131 -   |           |                         |
| F | -               |                  |                                 |                                       | 1                     |        |        |           |                    |      | 1 II  | 11-1             |                      |                   |      |          |           | -         |                         |
| Ē |                 | -                |                                 | <u> </u>                              |                       |        |        |           |                    |      |       |                  |                      |                   |      |          |           | -         |                         |
| ł | -24             | -                |                                 |                                       | -                     |        |        |           |                    |      |       | 11.1             |                      |                   |      |          |           |           |                         |
| ł | 7               | -                |                                 | · · _                                 | 1                     |        | MW     |           | UK                 |      |       |                  |                      |                   |      |          |           |           |                         |
| ŀ | 132             | 2                |                                 | · _ · ·                               |                       |        |        |           |                    |      | li ii | Ϊİ               |                      |                   |      |          | - 132 -   |           |                         |
| F | -               |                  |                                 | · _ · ·                               |                       |        |        |           |                    |      |       |                  |                      |                   |      |          |           |           |                         |
| F |                 | _                |                                 |                                       | 1                     |        |        |           |                    |      |       |                  |                      |                   |      |          |           |           |                         |
| Ē | -25             | 1                |                                 |                                       |                       |        |        |           |                    |      |       | II I             |                      |                   |      |          |           | -         |                         |
| Ē |                 |                  |                                 |                                       | -                     |        |        |           |                    |      |       |                  |                      |                   |      |          |           |           |                         |
| ł | 133.(           | ) – (<br>        | MUDSTONE; grey; medium          |                                       |                       |        |        | 133.0     |                    |      | li ii | Ϊİ               |                      |                   |      |          | - 133 -   | 1         |                         |
| ł |                 | ]                |                                 | ====                                  |                       |        |        |           |                    |      |       |                  |                      |                   |      |          |           |           |                         |
| ŀ | ŝ               | -                |                                 |                                       | 1                     |        |        |           |                    |      |       |                  |                      |                   |      |          |           | -         |                         |
| F | -26             | -                |                                 |                                       |                       |        |        |           |                    |      |       |                  |                      |                   |      |          |           | -         |                         |
| Ē | 134             | 1                |                                 |                                       | -                     |        |        |           |                    |      |       |                  |                      |                   |      |          | - 134 -   |           |                         |
| - |                 | -                |                                 |                                       | 1                     |        |        |           |                    |      | i ii  | ii i             |                      |                   |      |          |           |           |                         |
| ł |                 | -                |                                 |                                       |                       |        |        |           |                    |      |       |                  |                      |                   |      |          |           |           |                         |
| Ę | -27             | ]                |                                 | ====                                  |                       |        |        |           |                    |      | li ii |                  |                      |                   |      |          |           | ]         |                         |
| F |                 |                  |                                 |                                       |                       |        |        |           |                    |      |       |                  |                      |                   |      |          |           |           |                         |
| Ē | 135             | 5                |                                 |                                       | 1                     |        | SW     |           | UK                 |      | li ii |                  |                      |                   |      |          | - 135 -   | -         |                         |
| ł |                 | -                |                                 |                                       |                       |        |        |           |                    |      |       |                  |                      |                   |      |          |           |           |                         |
| ł | m               | -                |                                 | ====                                  |                       |        |        |           |                    |      |       |                  |                      |                   |      |          |           |           |                         |
| F | -28             |                  |                                 | ====                                  |                       |        |        |           |                    |      | 1.11  |                  |                      |                   |      |          |           |           |                         |
| ŧ | 136             | ;                |                                 |                                       | 1                     |        |        |           |                    |      |       |                  |                      |                   |      |          | - 136 -   |           |                         |
| Ē | -               | -                |                                 | E                                     |                       |        |        |           |                    |      |       |                  |                      |                   |      |          |           | -         |                         |
| ł |                 | -                |                                 |                                       | -                     |        |        |           |                    |      |       |                  |                      |                   |      |          |           |           |                         |
| ł | -29             | ]                |                                 | <u> </u>                              |                       |        |        |           |                    |      |       |                  |                      |                   |      |          |           |           |                         |
| F | •               | -                |                                 |                                       | 1                     |        |        |           |                    |      |       |                  |                      |                   |      |          |           | -         |                         |
| Ē | 137.0           | ) - [-           | TUFFACEOUS SILTSTONE; red       |                                       | 1                     |        |        | 137.0     |                    | -    |       |                  |                      |                   |      |          | - 137 -   |           |                         |
| ł |                 | - 9              | green                           |                                       | 1                     |        |        |           |                    |      |       |                  |                      |                   |      |          |           |           |                         |
| ł | ~               | -                |                                 | · · ·                                 |                       |        | sw     |           | UK                 |      | i ii  |                  |                      |                   |      |          |           |           |                         |
| ŀ | -30             | ]                |                                 | · _ ·                                 | -                     |        |        |           |                    |      |       |                  |                      |                   |      |          |           |           |                         |
| F | 138.0           | , <del> </del> . |                                 |                                       | 1                     |        |        | 138.0     | <u> </u>           |      |       |                  |                      |                   |      |          | - 138 -   |           |                         |
| E |                 |                  | LAMINITE; grey                  |                                       | 1                     |        |        |           |                    |      |       |                  |                      |                   |      |          | -         |           |                         |
| F |                 | -                |                                 | ••••                                  | 1                     |        |        |           |                    |      |       |                  |                      |                   |      |          |           |           |                         |
| þ | -31             | ]                |                                 | • • • • •                             |                       |        |        |           |                    |      |       |                  |                      |                   |      |          |           |           |                         |
| F | •               | -                |                                 | ••••                                  | 1                     |        |        |           |                    |      |       |                  |                      |                   |      |          |           |           |                         |
| F | 139             |                  |                                 | · · · · · · · · · · · · · · · · · · · | 1                     |        | \$W-F  | \$        | UK                 |      |       |                  |                      |                   |      |          | - 139 -   | -         |                         |
| E |                 | +                |                                 |                                       | 1                     |        |        |           |                    |      |       |                  |                      |                   |      |          |           |           |                         |
| ŀ | ~               | -                |                                 | • • • • •                             | 1                     |        |        |           |                    |      |       |                  |                      |                   |      |          |           |           |                         |
| F | -32             | ]                |                                 | •••••<br>••••                         | }                     |        |        |           |                    |      |       |                  |                      |                   |      |          |           |           |                         |
| L |                 | 1                |                                 | · · · · ·                             | -                     | shadir |        |           | 1                  |      |       |                  |                      |                   |      |          | -         | -         |                         |

PLANT: Hydrapower Scout Switched to Henjin DB8 from 140 m depth OPERATOR: METHOD: AT to 5.5m, then WB to 157.3m CASING: HWT to 5.5m **REMARKS:** Coordinates obtained using a differential GPS typically accurate to ±0.1 m.

**Douglas Partners** Geotechnics | Environment | Groundwater

### **BOREHOLE LOG**

SURFACE LEVEL: 107.7 AHD COORDINATE E:378148.5 N: 6351797.7 PROJECT No: 210780.01 DATUM/GRID: MGA94 Zone 56 DIP/AZIMUTH: 90°/---

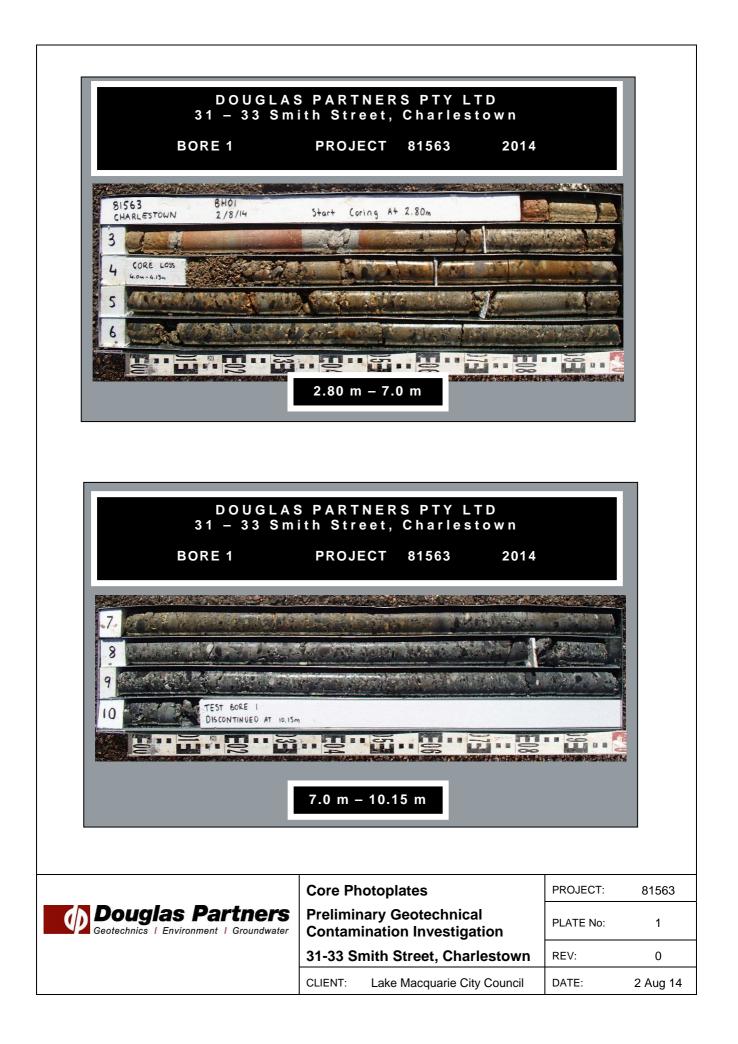
LOCATION ID: 1001 DATE: 09/05/22 - 17/05/22 SHEET: 15 of 16

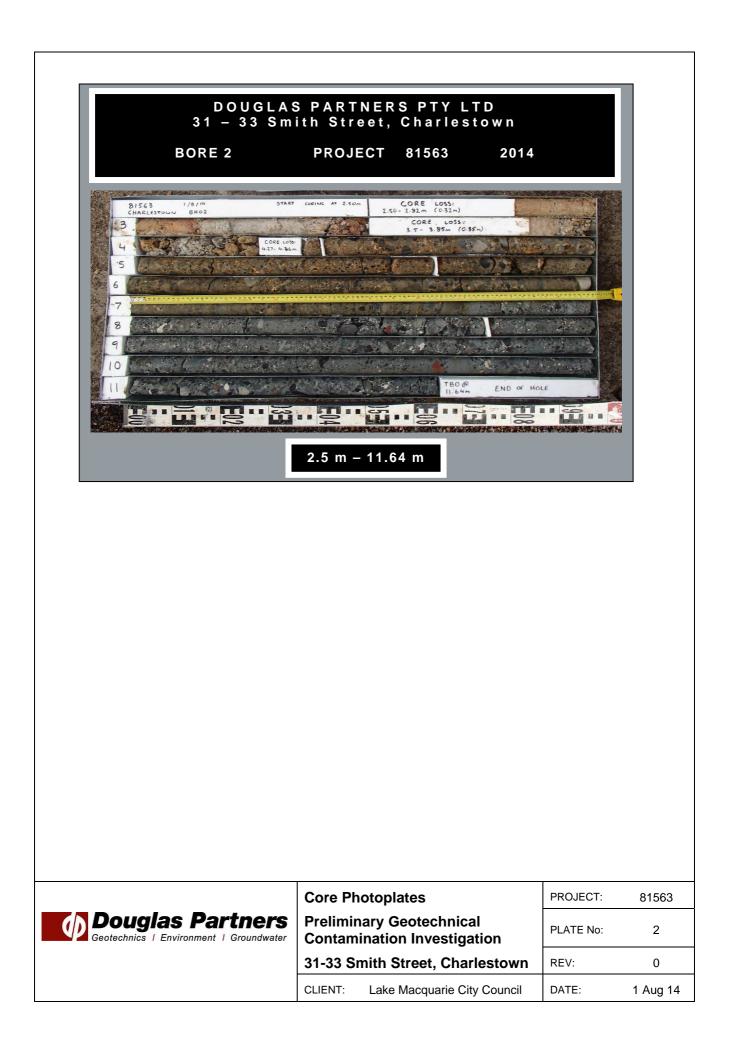
|    |                    |           |                                          | CONDITIC                              | DNS                   |             |          | RED      | )         |                    | ROC      | ۲          |       |   |                    |                      | SA                | MPL       | E<br>I   | -         |           | TESTING                 |
|----|--------------------|-----------|------------------------------------------|---------------------------------------|-----------------------|-------------|----------|----------|-----------|--------------------|----------|------------|-------|---|--------------------|----------------------|-------------------|-----------|----------|-----------|-----------|-------------------------|
|    |                    |           |                                          |                                       | -                     | SOIL        |          |          |           | т                  | RUU      | /n<br>     |       | ш |                    |                      | ł                 |           |          |           |           |                         |
|    | RL (m)             | DEPTH (m) | DESCRIPTION<br>OF<br>STRATA              | GRAPHIC                               | ORIGIN <sup>(#)</sup> |             | MOISTURE | WEATH.   | DEPTH (m) | M<br>M<br>VH<br>VH | RECOVERY | (%)<br>POD | מא    |   | <sup>500</sup> (m) | DEFECTS &<br>REMARKS | SAMPLE<br>REMARKS | түре      | INTERVAL | DEPTH (m) | TEST TYPE | RESULT<br>AND<br>REMARK |
|    | _                  |           | LAMINITE; grey (continued)               | ••••                                  | -                     |             |          |          |           |                    |          |            |       |   |                    |                      | 1                 |           |          |           |           |                         |
|    |                    |           |                                          | • • • •<br>• • • •<br>• • • •         | •                     |             |          |          |           |                    |          |            |       |   |                    |                      |                   |           |          |           | -         |                         |
|    | -33                | -         |                                          | • • • • •<br>• • • •                  | •                     |             |          |          |           |                    |          |            |       |   |                    |                      |                   |           |          |           |           |                         |
| ł  | '                  |           |                                          | • • • •                               | ·                     |             |          |          |           |                    |          |            |       |   |                    |                      |                   |           |          | -         |           |                         |
| Ī  | _                  | 141 -     |                                          | · · · · · · · · · · · · · · · · · · · | •                     |             |          |          |           |                    |          |            |       |   | · · ·              |                      |                   |           |          | - 141 -   | -         |                         |
|    |                    |           |                                          | • • • •                               | •                     |             |          |          |           |                    |          |            |       |   |                    |                      |                   |           |          |           |           |                         |
| ł  | 4                  | -         |                                          | · · · · ·                             |                       |             |          |          |           |                    |          |            |       |   |                    |                      |                   |           |          |           |           |                         |
|    | -34                |           |                                          |                                       | -                     |             |          |          |           |                    |          |            |       |   |                    |                      |                   |           |          |           | -         |                         |
|    |                    | 142 -     |                                          | • • • •                               | ·                     |             |          |          |           |                    |          |            |       |   |                    |                      |                   |           |          | - 142 -   |           |                         |
|    | -                  |           |                                          | • • • •                               | •                     |             |          |          |           |                    |          |            |       |   |                    |                      |                   |           |          |           |           |                         |
|    |                    | -         |                                          | · · · · ·<br>· · · ·                  | •                     |             |          |          |           |                    |          |            |       |   |                    |                      |                   |           |          |           |           |                         |
|    | -35                |           |                                          | • • • •                               | ·                     |             |          |          |           |                    |          |            |       |   |                    |                      |                   |           |          |           |           |                         |
|    |                    | 143-      |                                          | • • • •<br>• • • •<br>• • • •         | ·                     |             |          |          |           |                    |          |            |       |   |                    |                      |                   |           |          | - 143 -   | -         |                         |
|    | -                  |           |                                          | ••••                                  | •                     |             |          |          |           |                    |          |            |       |   |                    |                      |                   |           |          |           |           |                         |
| -  |                    | -         |                                          | ••••                                  | •                     |             |          |          |           |                    |          |            |       |   |                    |                      |                   |           |          |           |           |                         |
| ł  | -36                |           |                                          | · · · · · · · · · · · · · · · · · · · |                       |             |          |          |           |                    |          |            |       |   |                    |                      |                   |           |          |           | -         |                         |
|    |                    | 144 -     |                                          | • • • • •<br>• • • •                  | •                     |             |          | SW-FS    |           | UK                 |          |            |       |   |                    |                      |                   |           |          | - 144 -   |           |                         |
|    | -                  | 144 -     |                                          | • • • •                               | •                     |             |          | 5VV-FC   |           | UN                 |          |            |       |   |                    |                      |                   |           |          | - 144 -   |           |                         |
|    |                    |           |                                          | · · · · · · · · · · · · · · · · · · · | •                     |             |          |          |           |                    |          |            |       |   |                    |                      |                   |           |          |           | -         |                         |
|    | -37                | -         |                                          | • • • •<br>• • • •                    | •                     |             |          |          |           |                    |          |            |       |   |                    |                      |                   |           |          |           |           |                         |
|    |                    |           |                                          | · · · · · · · · · · · · · · · · · · · | •                     |             |          |          |           |                    |          |            |       |   | · · I              |                      |                   |           |          |           |           |                         |
|    | _                  | 145-      |                                          | • • • •                               | •                     |             |          |          |           |                    |          |            |       |   |                    |                      |                   |           |          | - 145 -   |           |                         |
|    |                    |           |                                          | • • • •<br>• • • •<br>• • • •         | _                     |             |          |          |           |                    |          |            |       |   |                    |                      |                   |           |          |           |           |                         |
|    | -38                | -         |                                          |                                       | -                     |             |          |          |           |                    |          |            |       |   |                    |                      |                   |           |          |           |           |                         |
|    | 1                  |           |                                          | ••••                                  | •                     |             |          |          |           |                    |          |            |       |   |                    |                      |                   |           |          |           |           |                         |
|    | _                  | 146-      |                                          | • • • •<br>• • • •<br>• • • •         | ·                     |             |          |          |           |                    |          |            |       |   |                    |                      |                   |           |          | - 146 -   |           |                         |
|    |                    |           |                                          | • • • • •<br>• • • •                  | •                     |             |          |          |           |                    |          |            |       |   |                    |                      |                   |           |          |           |           |                         |
|    | -39                | -         |                                          | · · · · ·<br>· · · ·                  |                       |             |          |          |           |                    |          |            |       |   |                    |                      |                   |           |          |           |           |                         |
|    | ကု                 |           |                                          | ••••                                  |                       |             |          |          |           |                    |          |            |       |   |                    |                      |                   |           |          |           |           |                         |
|    |                    | 147 -     |                                          | • • • •<br>• • • •                    | -                     |             |          |          |           |                    |          |            |       |   |                    |                      |                   |           |          | - 147 -   |           |                         |
|    | -                  |           |                                          | ••••                                  | -                     |             |          |          |           |                    |          |            |       |   |                    |                      |                   |           |          |           |           |                         |
| -  | ~                  | -         |                                          | ••••                                  | -                     |             |          |          |           |                    |          |            |       |   |                    |                      |                   |           |          |           |           |                         |
|    | 40                 |           |                                          | • • • •                               | ·                     |             |          |          |           |                    |          |            |       |   |                    |                      |                   |           |          |           |           |                         |
|    | 14                 | 48.0-     |                                          | ••••                                  |                       |             | ŀ        |          | 148.0     |                    | 4        |            |       |   |                    |                      |                   |           |          | - 148 -   | -         |                         |
|    | -                  |           | TUFF; pale brown                         |                                       |                       |             |          |          |           |                    |          |            |       |   |                    |                      |                   |           |          |           |           |                         |
| -  |                    | -         |                                          |                                       |                       |             |          | SW       |           | UK                 |          |            |       |   |                    |                      |                   |           |          |           |           |                         |
| ŀ  | 4                  |           |                                          |                                       |                       |             |          |          |           |                    |          |            |       |   |                    |                      |                   |           |          |           |           |                         |
|    | 1/                 | 49.0-     |                                          |                                       |                       |             |          |          | -149.0-   |                    |          |            |       |   |                    |                      |                   |           |          | - 149 -   |           |                         |
|    |                    |           | LAMINITE; grey                           | · · · · · · · · · · · · · · · · · · · | -                     |             |          |          |           |                    |          |            |       |   |                    |                      |                   |           |          |           | -         |                         |
| -  |                    | -         |                                          | • • • •                               | •                     |             |          | SW-FS    |           | UK                 |          |            |       |   |                    |                      |                   |           |          |           | 1         |                         |
|    | 42                 | -         |                                          | • • • •                               | •                     |             |          | , vv-ra  |           | UN                 |          |            |       |   |                    |                      |                   |           |          |           |           |                         |
|    | -                  |           | -                                        | · · · · · · · · · · · · · · · · · · · | ·                     |             |          |          |           |                    |          |            |       |   |                    |                      |                   |           |          |           | -         |                         |
| ES | : <sup>(#)</sup> S | Soil ori  | gin is "probable" unless otherwise state |                                       |                       | e density s | hading i | s for vi | sual refe | erence only        | y - no c | correlati  | ion b |   | cohes              | sive and g           | granular mat      | erials is | implied  | I.        |           |                         |

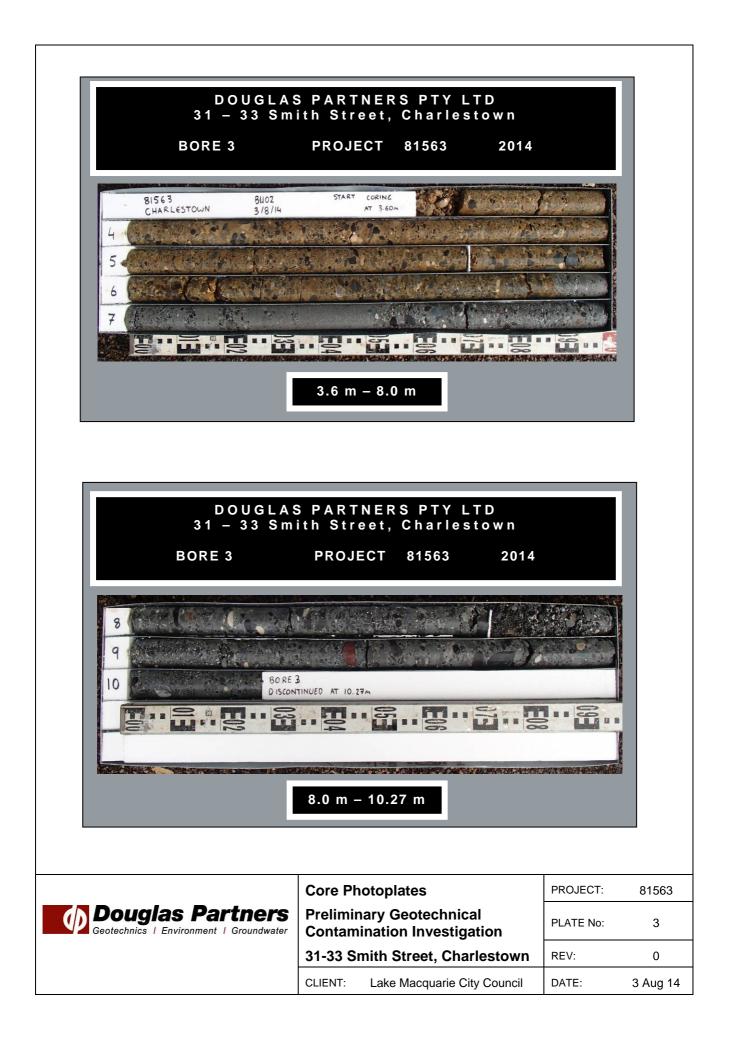
PLANT: Hydrapower Scout Switched to Henjin DB8 from 140 m depth OPERATOR: METHOD: AT to 5.5m, then WB to 157.3m CASING: HWT to 5.5m **REMARKS:** Coordinates obtained using a differential GPS typically accurate to ±0.1 m.



#### **BOREHOLE LOG**


SURFACE LEVEL: 107.7 AHD COORDINATE E:378148.5 N: 6351797.7 PROJECT No: 210780.01 DATUM/GRID: MGA94 Zone 56 DIP/AZIMUTH: 90°/---


LOCATION ID: 1001 DATE: 09/05/22 - 17/05/22 SHEET: 16 of 16


|                  |                            | COI                                                                                                                                           |                                       | NS E                  |                                                   | NTĘ      | RED      | )                              |          |              |                 |         |                             |          |                      | SA                | MPL       | E        |           |           | TESTING                   |
|------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------|---------------------------------------------------|----------|----------|--------------------------------|----------|--------------|-----------------|---------|-----------------------------|----------|----------------------|-------------------|-----------|----------|-----------|-----------|---------------------------|
| ~                |                            |                                                                                                                                               |                                       |                       | SOIL                                              |          |          |                                | _        | 1            | оск             |         | ш                           |          |                      | -                 |           |          |           |           |                           |
| GROUNDWATER      | RL (m)<br>DEPTH (m)        | DESCRIPTION<br>OF<br>STRATA                                                                                                                   | GRAPHIC                               | ORIGIN <sup>(#)</sup> | CONSIS. <sup>(1)</sup><br>DENSITY. <sup>(1)</sup> | MOISTURE | WEATH.   | DEPTH (m)                      |          | EH<br>H<br>H | RECOVERY<br>(%) | RQD     | 001 FRACTURE<br>005 SPACING | 5.00 (m) | DEFECTS &<br>REMARKS | SAMPLE<br>Remarks | TYPE      | INTERVAL | DEPTH (m) | TEST TYPE | RESULTS<br>AND<br>REMARKS |
|                  | -                          | LAMINITE; grey (continued)                                                                                                                    | · · · · · · · · · · · · · · · · · · · |                       |                                                   |          |          |                                |          |              |                 |         |                             |          |                      |                   |           |          |           |           |                           |
|                  | 151 -                      |                                                                                                                                               |                                       |                       |                                                   |          |          |                                |          |              |                 |         |                             |          |                      |                   |           |          | - 151 -   |           |                           |
|                  | 152 -<br>152 -             |                                                                                                                                               |                                       | -                     |                                                   | S        | W-FS     | \$                             | UK       |              |                 |         |                             |          |                      |                   |           |          | - 152 -   |           |                           |
| ss               | 153 -<br>-<br>-<br>-       |                                                                                                                                               |                                       | -                     |                                                   |          |          |                                |          |              |                 |         |                             |          |                      |                   |           |          | - 153 -   |           |                           |
| ater los         | 153.9                      | 1                                                                                                                                             | •••••                                 |                       |                                                   |          |          | -153.9-                        |          |              |                 |         |                             |          |                      |                   |           |          |           |           |                           |
| Total water loss | 154 -                      | COAL; black                                                                                                                                   |                                       |                       |                                                   | \$       | W-FF     |                                | UK       |              |                 |         |                             | 1.11     |                      |                   |           |          | - 154 -   |           |                           |
|                  | 154.4<br>24<br>155 -       | VOID; (Drill string drop, rods lowered<br>without rotation to 155.65 m<br>depthwith no resistance<br>encountered. Sudden total water<br>loss) |                                       |                       |                                                   |          | NA       | -154.4-                        | NA       |              |                 |         |                             |          |                      |                   |           |          | - 155 -   |           |                           |
|                  | -155.65<br>156 -           | RUBBLE; (Rods lowered with minimal rotation and water pressure)                                                                               |                                       |                       |                                                   |          | NA       | -133.0-                        | NA       |              |                 |         |                             |          |                      |                   |           |          | - 156 -   |           |                           |
|                  | 156.88<br>157 -            | FLOOR; (Consistent increased drill resistance)                                                                                                |                                       |                       |                                                   | -        | UK       | <del>1</del> 56.8 <del>8</del> | UK       |              |                 |         |                             |          |                      |                   |           |          | - 157 -   |           |                           |
|                  | -20                        |                                                                                                                                               |                                       |                       |                                                   |          |          |                                |          |              |                 |         |                             |          |                      |                   |           |          |           |           |                           |
|                  | 158.0 -                    | Borehole discontinued at 158<br>Limit of investigation                                                                                        | :                                     | depti                 | h                                                 |          |          | 158.0-                         |          |              |                 |         |                             |          |                      |                   | <u> </u>  |          | 158       |           |                           |
| NOTES            | S: <sup>(#)</sup> Soil ori | gin is "probable" unless otherwise stated. <sup>(*)</sup> Cor                                                                                 | sistencv/R                            | elative               | density sh                                        | adina is | s for vi | sual ref                       | erence o | nlv -        | no corre        | elation | between                     | cohes    | sive and o           | ranular mat       | erials is | implied  |           |           |                           |
|                  |                            | drapower Scout Switched to H                                                                                                                  |                                       |                       |                                                   |          |          |                                |          |              |                 |         |                             |          |                      |                   |           |          | SED:      |           | СТВ                       |

PLANT: Hydrapower Scout Switched to Henjin DB8 from 140 m depth OPERATOR: METHOD: AT to 5.5m, then WB to 157.3m CASING: HWT to 5.5m **REMARKS:** Coordinates obtained using a differential GPS typically accurate to ±0.1 m.









# Appendix C

Drawing 1 – Test Location Plan

Drawing 2 – Cross-section A

Drawing 3 – Cross-section B

Drawing 4 – Cross-section C



Drawing adapted from NearMap image dated April 2019 and previous DP investigations drawings



|   | CLIENT: | GPV Property G | Group            | TITLE: | Test Location Plan                 |
|---|---------|----------------|------------------|--------|------------------------------------|
| 5 | OFFICE: | Newcastle      | DRAWN BY: MPG    |        | Proposed Multi-Storey Development  |
| - | SCALE:  | 1:500 @ A3     | DATE: 17.11.2022 |        | 31 to 33 Smith Street, Charlestown |





Locality Plan

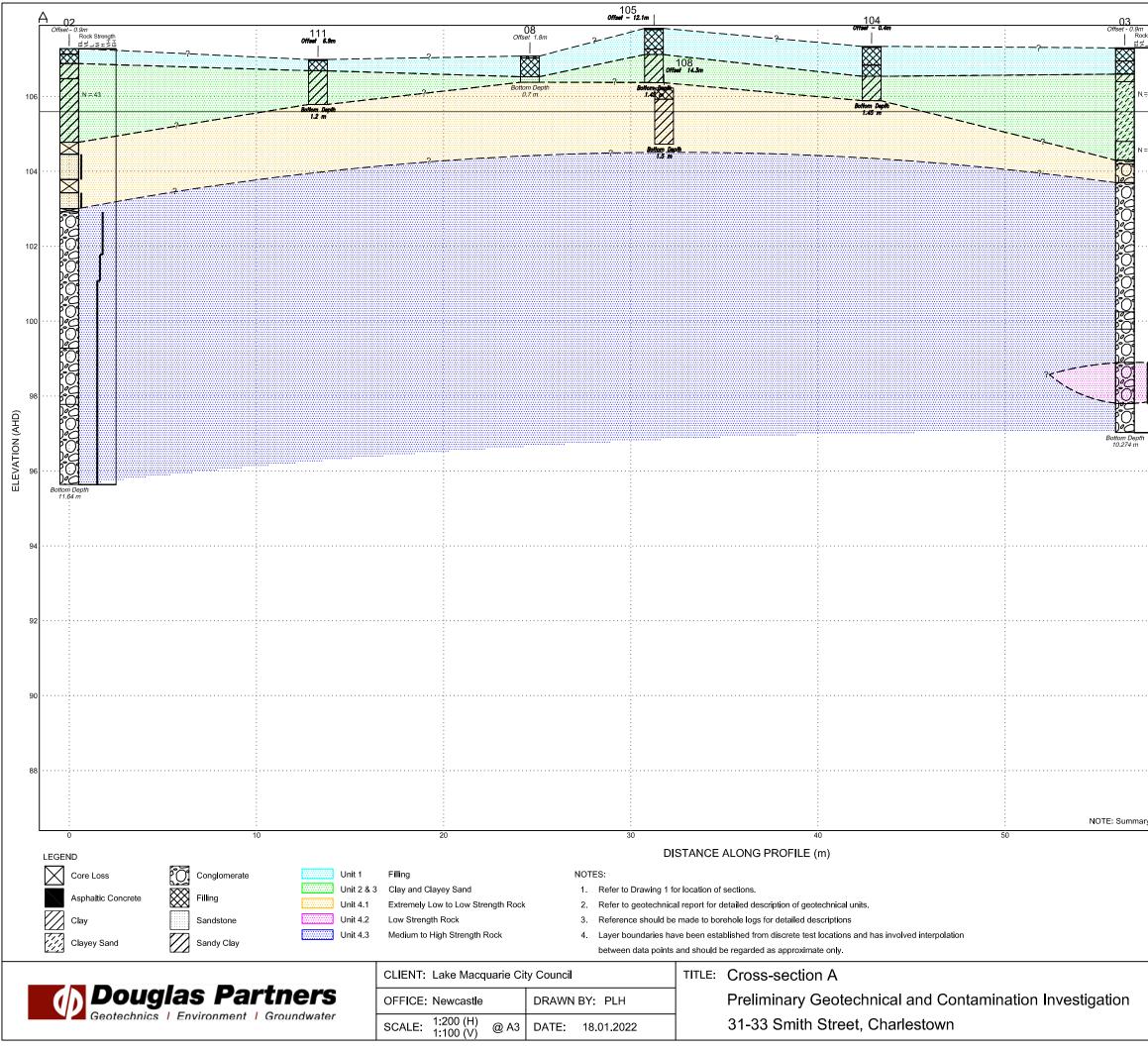
Approximate Bore Location (Project 81563.01 - November 2014)

Approximate Bore Location (Project 81563.00 - Augsut 2014)

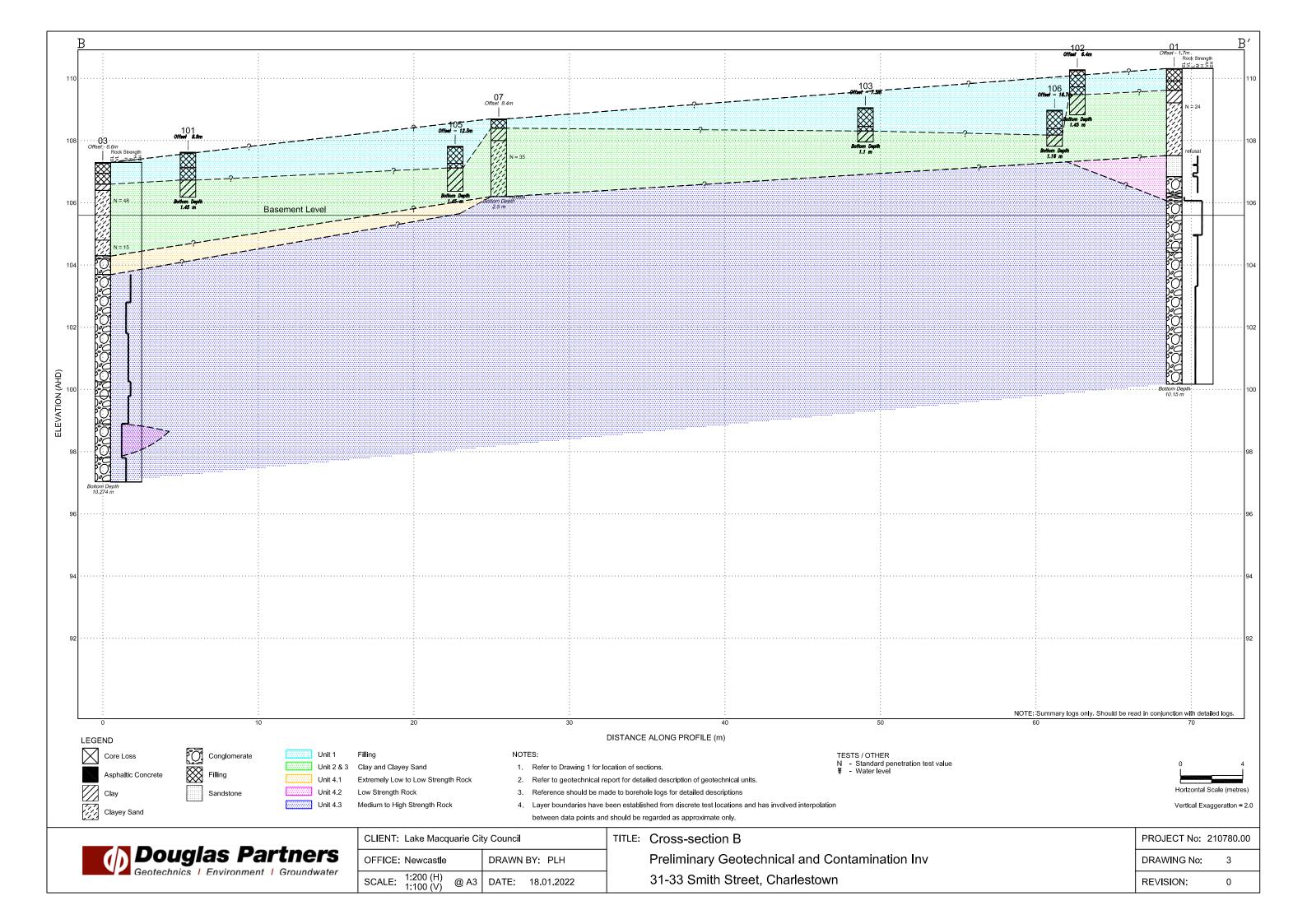
· Approximate Bore Location (Project 81563.02 - August 2016)

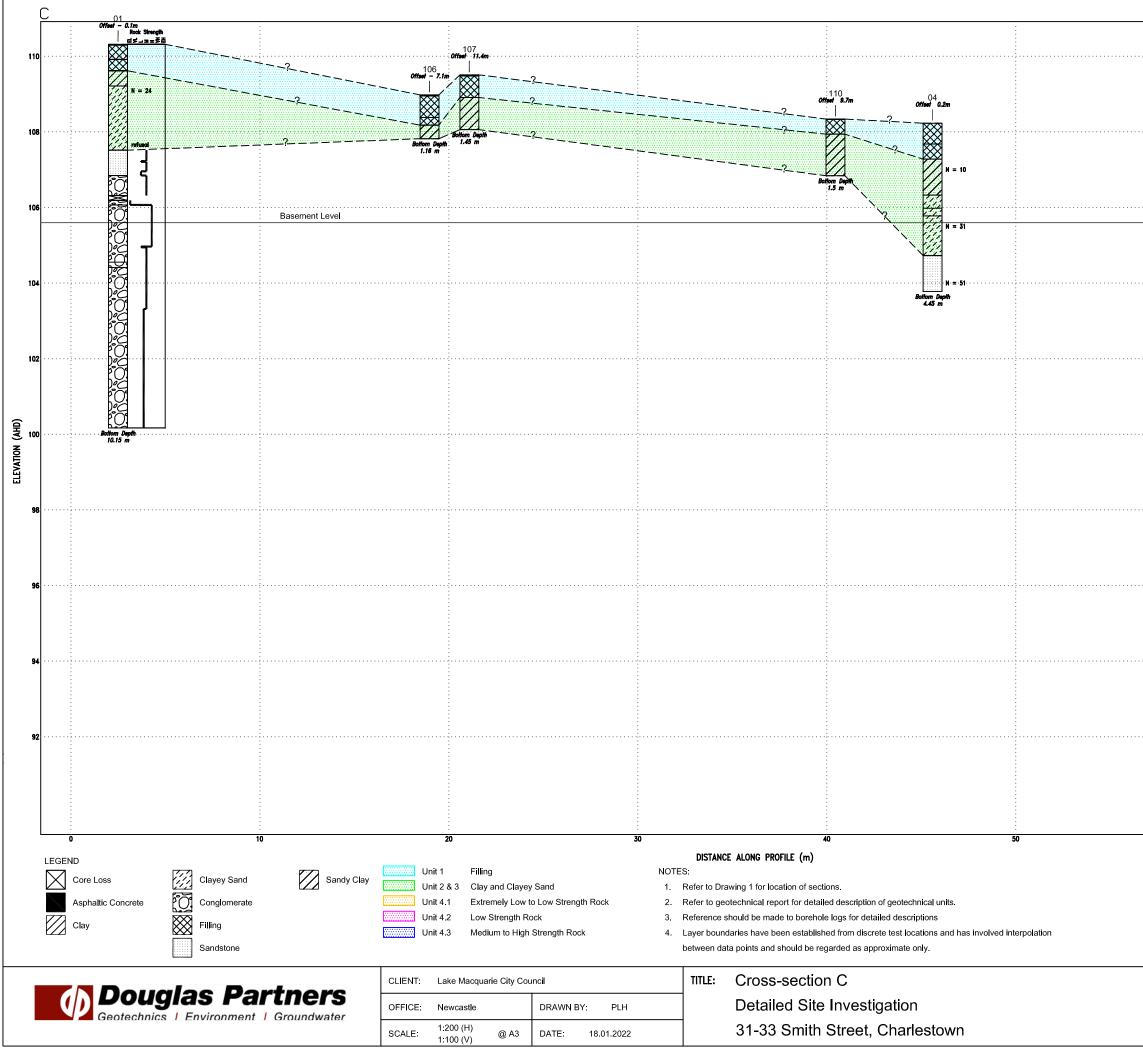
Approximate Bore Location (Project 210780.01 - June 2022)

Approximate Footprint of Proposed Medical Facility




PROJECT No:210780.00


DRAWING No:


**REVISION**:

1



| 0                                                      | <u> </u>                    |
|--------------------------------------------------------|-----------------------------|
| 9m .<br>Rock Strength<br>⊟ਤ⊐≥⊥≍∃⊞                      |                             |
|                                                        |                             |
| N≑48<br>Basement Level                                 |                             |
| Dasement Level                                         |                             |
| N = 15                                                 |                             |
|                                                        |                             |
|                                                        |                             |
|                                                        |                             |
| <b> </b>                                               |                             |
|                                                        |                             |
|                                                        |                             |
| · ) · · · ·                                            | 100                         |
|                                                        |                             |
| <b>F-1</b> - <b>2</b> <sup>2</sup>                     |                             |
|                                                        | 98                          |
| auth .                                                 |                             |
| əpth<br>m                                              |                             |
|                                                        | 96                          |
|                                                        |                             |
|                                                        |                             |
|                                                        | 94                          |
|                                                        |                             |
|                                                        |                             |
|                                                        | 92                          |
|                                                        |                             |
|                                                        |                             |
|                                                        | 90                          |
|                                                        |                             |
|                                                        |                             |
|                                                        |                             |
| mary logs only. Should be read in conjunction wit      | h detailed logs.            |
| 60                                                     | 70                          |
| TESTS / OTHER                                          |                             |
| N - Standard penetration test value<br>¥ - Water level |                             |
|                                                        | Horizontal Scale (metres    |
|                                                        | VertIcal Exaggeration = 2.0 |
|                                                        | PROJECT No: 210780.00       |
|                                                        | DRAWING No: 2               |
|                                                        | REVISION: 0                 |





|          |                                             |                                                       |                                                                          | /               |
|----------|---------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------|-----------------|
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       | 1                                                                        | 10              |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          | 80              |
|          |                                             |                                                       |                                                                          | 00              |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       | 1                                                                        | 06              |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          | 04              |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       | 1                                                                        | 02              |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       | 1                                                                        | 00              |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             | ••••••••••••••••                                      | 9                                                                        | 8               |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       | ······ 9                                                                 | 6               |
|          |                                             |                                                       | ····· 9                                                                  | 16              |
|          |                                             |                                                       | ····· 9                                                                  | 16              |
|          |                                             |                                                       | ····· 9                                                                  | 16              |
|          |                                             |                                                       | ····· 9                                                                  | 16              |
|          |                                             |                                                       | ····· 9                                                                  | 16              |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          | 16              |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       |                                                                          |                 |
|          |                                             |                                                       | ····· 9.                                                                 | 14              |
|          |                                             |                                                       | ····· 9.                                                                 |                 |
|          |                                             |                                                       | ····· 9.                                                                 | 14              |
|          |                                             |                                                       | ····· 9.                                                                 | 14              |
|          |                                             |                                                       | ····· 9.                                                                 | 14              |
|          |                                             |                                                       | ····· 9.                                                                 | 14              |
|          |                                             |                                                       | ····· 9.                                                                 | 14              |
|          |                                             |                                                       | ····· 9.                                                                 | 14              |
| NOTE: S⊔ |                                             |                                                       |                                                                          | 14              |
|          | mmary logs only. Should be read             | d in conjunction wit                                  | s, s, s, s                                 | 14              |
|          |                                             | d in conjunction wit                                  |                                                                          | 14              |
|          | mmary logs only. Should be read             | d in conjunction wit                                  | s, s, s, s                                 | 14              |
| 6        | mmary logs only. Should be read             | d in conjunction wit                                  | s, s, s, s                                 | 14              |
| 6<br>TE: | mmary logs only. Should be read<br><b>0</b> | d in conjunction wil                                  | s, s, s, s                                 | 14              |
| 6<br>TE: | mmary logs only. Should be read<br><b>0</b> | d in conjunction wil                                  | s, s, s, s                                 | 14              |
| 6<br>TE: | mmary logs only. Should be read             | d in conjunction wil                                  | s, s, s, s                                 | 14              |
| 6<br>TE: | mmary logs only. Should be read<br><b>0</b> | d in conjunction will<br>7                            | h detailed logs.                                                         | 94              |
| 6<br>TE: | mmary logs only. Should be read<br><b>0</b> | d in conjunction will<br>7                            | s, s, s, s, s, s, s, s, s, s, s, s, s, s                                 | 14              |
| 6<br>TE: | mmary logs only. Should be read<br><b>0</b> | d in conjunction wil<br>7<br>ue 0<br>Horizo           | h detailed logs.                                                         | )4<br>)2<br>≶)  |
| 6<br>TE: | mmary logs only. Should be read<br><b>0</b> | d in conjunction wil<br>7<br>ue 0<br>Horizo           | h detailed logs.                                                         | )4<br>)2<br>≶)  |
| 6<br>TE: | mmary logs only. Should be read<br><b>0</b> | d in conjunction wil<br>7<br>ue 0<br>Horizo           | h detailed logs.                                                         | 14<br>)2<br>;;) |
| 6<br>TE: | mmary logs only. Should be read<br><b>0</b> | d in conjunction wit<br>7<br>ue 0<br>Horiza<br>Vertia | h detailed logs.                                                         | 14<br>)2<br>;;) |
| 6<br>TE: | mmary logs only. Should be read<br><b>0</b> | d in conjunction wil<br>7<br>ue 0<br>Horizo           | h detailed logs.                                                         | 14<br>)2<br>;;) |
| 6<br>TE: | mmary logs only. Should be read<br><b>0</b> | d in conjunction wit<br>7<br>ue 0<br>Horiza<br>Vertia | h detailed logs.<br>0 4 pontal Scale (metres cal Exaggeration = 81563.01 | 14<br>)2<br>;;) |
| 6<br>TE: | mmary logs only. Should be read<br><b>0</b> | d in conjunction wit<br>7<br>ue 0<br>Horiza<br>Vertia | h detailed logs.                                                         | 14<br>)2<br>;;) |
| 6<br>TE: | mmary logs only. Should be read<br><b>0</b> | d in conjunction wit<br>7<br>ue 0<br>Horiza<br>Vertia | h detailed logs.<br>0 4 pontal Scale (metres cal Exaggeration = 81563.01 | 14<br>)2<br>;;) |